Queer current and pacemaker: the hyperpolarization-activated cation current in neurons.

The cation conductance activated upon hyperpolarization of the membrane beyond the resting value appears to represent an ubiquitous type of membrane channel. Our understanding of the respective membrane current, termed Ih, in neurons has matured from that of a "queer" current toward that of a highly regulated mechanism that is particularly important in determining integrative behavior near rest and providing the pacemaker depolarization during rhythmic-oscillatory activity.

[1]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[2]  M. Ito,et al.  Potential Changes produced by Application of Current Steps in Motoneurones , 1961, Nature.

[3]  M. Ito,et al.  Electrical behaviour of the motoneurone membrane during intracellularly applied current steps. , 1965, The Journal of physiology.

[4]  H. Brown,et al.  How does adrenaline accelerate the heart? , 1979, Nature.

[5]  E. A. Schwartz,et al.  A voltage‐clamp study of the light response in solitary rods of the tiger salamander. , 1979, The Journal of physiology.

[6]  J. M. Richards,et al.  ATP-dependent activation of adenylate cyclase. , 1981, Journal of Biological Chemistry.

[7]  D DiFrancesco,et al.  A new interpretation of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[8]  D DiFrancesco,et al.  A study of the ionic nature of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[9]  D Bertrand,et al.  Voltage‐activated and calcium‐activated currents studied in solitary rod inner segments from the salamander retina , 1982, The Journal of physiology.

[10]  M. Mayer,et al.  A voltage‐clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones. , 1983, The Journal of physiology.

[11]  D DiFrancesco,et al.  Characterization of the pace‐maker current kinetics in calf Purkinje fibres. , 1984, The Journal of physiology.

[12]  C. Bader,et al.  Effect of changes in intra‐ and extracellular sodium on the inward (anomalous) rectification in salamander photoreceptors. , 1984, The Journal of physiology.

[13]  Selective block of inward but not outward rectification in rat sensory neurones infected with herpes simplex virus. , 1986, The Journal of physiology.

[14]  Dario DiFrancesco,et al.  Characterization of single pacemaker channels in cardiac sino-atrial node cells , 1986, Nature.

[15]  F. Crépel,et al.  Inward rectification and low threshold calcium conductance in rat cerebellar Purkinje cells. An in vitro study. , 1986, The Journal of physiology.

[16]  M. Mazzanti,et al.  Properties of the hyperpolarizing‐activated current (if) in cells isolated from the rabbit sino‐atrial node. , 1986, The Journal of physiology.

[17]  S. Hestrin,et al.  The properties and function of inward rectification in rod photoreceptors of the tiger salamander. , 1987, The Journal of physiology.

[18]  R. Gallego,et al.  Effects of central or peripheral axotomy on membrane properties of sensory neurones in the petrosal ganglion of the cat. , 1987, The Journal of physiology.

[19]  P. Grafe,et al.  Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. , 1987, The Journal of physiology.

[20]  P. Schwindt,et al.  Anomalous rectification in neurons from cat sensorimotor cortex in vitro. , 1987, Journal of neurophysiology.

[21]  Å. Edman,et al.  Current activation by membrane hyperpolarization in the slowly adapting lobster stretch receptor neurone. , 1987, The Journal of physiology.

[22]  Beavo Ja Multiple isozymes of cyclic nucleotide phosphodiesterase. , 1988 .

[23]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[24]  B. Rudy,et al.  Diversity and ubiquity of K channels , 1988, Neuroscience.

[25]  P. Schwindt,et al.  Influence of anomalous rectifier activation on afterhyperpolarizations of neurons from cat sensorimotor cortex in vitro. , 1988, Journal of neurophysiology.

[26]  D. DiFrancesco,et al.  Muscarinic control of the hyperpolarization‐activated current (if) in rabbit sino‐atrial node myocytes. , 1988, The Journal of physiology.

[27]  B. Hille,et al.  Ionic channels of the inner segment of tiger salamander cone photoreceptors , 1989, The Journal of general physiology.

[28]  S. W. Jones,et al.  On the resting potential of isolated frog sympathetic neurons , 1989, Neuron.

[29]  P. Hockberger,et al.  A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation , 1989, Nature.

[30]  N. Hagiwara,et al.  Modulation by intracellular Ca2+ of the hyperpolarization‐activated inward current in rabbit single sino‐atrial node cells. , 1989, The Journal of physiology.

[31]  E. Grove,et al.  9-Amino-1,2,3,4-tetrahydroacridine (THA) blocks agonist-induced potassium conductance in rat hippocampal neurones. , 1989, European journal of pharmacology.

[32]  R. Llinás,et al.  Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II , 1989, Nature.

[33]  T. Akasu,et al.  Volatile anaesthetics inhibit a cyclic AMP‐dependent sodium‐potassium current in cultured sensory neurones of bullfrog , 1990, British journal of pharmacology.

[34]  R. Nicoll,et al.  Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. , 1990, Physiological reviews.

[35]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[36]  M. Goethals,et al.  Use- and frequency-dependent blockade by UL-FS 49 of the if pacemaker current in sheep cardiac Purkinje fibres. , 1990, European journal of pharmacology.

[37]  Tomoyuki Takahashi,et al.  Inward rectification in neonatal rat spinal motoneurones. , 1990, The Journal of physiology.

[38]  D. McCormick,et al.  Noradrenergic and serotonergic modulation of a hyperpolarization‐activated cation current in thalamic relay neurones. , 1990, The Journal of physiology.

[39]  R. North,et al.  Cation current activated by hyperpolarization in a subset of rat nucleus accumbens neurons. , 1990, Journal of neurophysiology.

[40]  A. V. Maricq,et al.  Inward rectification in the inner segment of single retinal cone photoreceptors. , 1990, Journal of neurophysiology.

[41]  A. J. Berger,et al.  Direct excitation of rat spinal motoneurones by serotonin. , 1990, The Journal of physiology.

[42]  T. Akasu,et al.  Cyclic AMP regulates an inward rectifying sodium‐potassium current in dissociated bull‐frog sympathetic neurones. , 1990, The Journal of physiology.

[43]  M. Rosen,et al.  Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current i(f). , 1991, The Journal of physiology.

[44]  Å. Edman,et al.  Ion (H+, Ca2+, Co2+) and temperature effects on a hyperpolarization-activated membrane current in the lobster stretch receptor neurone. , 1991, Acta physiologica Scandinavica.

[45]  C. Bader,et al.  Development of anomalous rectification (Ih) and of a tetrodotoxin‐resistant sodium current in embryonic quail neurones. , 1991, The Journal of physiology.

[46]  D. McCormick,et al.  Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  Role of the anomalous rectifier in determining membrane potentials of mouse muscle fibres at low extracellular K , 1991 .

[48]  W. Giles,et al.  Voltage clamp measurements of the hyperpolarization‐activated inward current I(f) in single cells from rabbit sino‐atrial node. , 1991, The Journal of physiology.

[49]  H. Strauss,et al.  Ionic current mechanisms generating vertebrate primary cardiac pacemaker activity at the single cell level: an integrative view. , 1992, Annual review of physiology.

[50]  Functional effects of a hyperpolarization-activated membrane current in the lobster stretch receptor neurone. , 1992, Acta physiologica Scandinavica.

[51]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[52]  V. Crunelli,et al.  Computer simulation of the pacemaker oscillations of thalamocortical cells. , 1992, Neuroreport.

[53]  E. Marder,et al.  Contribution of individual ionic currents to activity of a model stomatogastric ganglion neuron. , 1992, Journal of neurophysiology.

[54]  E. Marder,et al.  Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. , 1992, Journal of neurophysiology.

[55]  H. Pape Adenosine promotes burst activity in guinea‐pig geniculocortical neurones through two different ionic mechanisms. , 1992, The Journal of physiology.

[56]  H. Pape,et al.  Nitric oxide controls oscillatory activity in thalamocortical neurons , 1992, Neuron.

[57]  A. Burkhalter,et al.  Differential expression of hyperpolarization-activated currents reveals distinct classes of visual cortical projection neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Yue Wang,et al.  Serotonin alters an inwardly rectifying current (Ih ) in rat cerebellar Purkinje cells under voltage clamp , 1993, Brain Research.

[59]  M. Kelly,et al.  Electrophysiology of guinea‐pig supraoptic neurones: role of a hyperpolarization‐activated cation current in phasic firing. , 1993, The Journal of physiology.

[60]  R. North,et al.  Dopamine and baclofen inhibit the hyperpolarization‐activated cation current in rat ventral tegmental neurones. , 1993, The Journal of physiology.

[61]  J. Nerbonne,et al.  Two kinetically distinct components of hyperpolarization‐activated current in rat superior colliculus‐projecting neurons. , 1993, The Journal of physiology.

[62]  T J Sejnowski,et al.  Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. , 1993, Biophysical journal.

[63]  A. Colino,et al.  Carbachol Potentiates Q Current and Activates a Calcium‐dependent Non‐specific Conductance in Rat Hippocampus In Vitro , 1993, The European journal of neuroscience.

[64]  N. Sperelakis,et al.  Hyperpolarization-activated inward current in embryonic chick cardiac myocytes: developmental changes and modulation by isoproterenol and carbachol. , 1993, European journal of pharmacology.

[65]  D DiFrancesco,et al.  Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. , 1993, Journal of neurophysiology.

[66]  Modulation of the automaticity by histamine and cimetidine in rabbit sino-atrial node cells. , 1993, General pharmacology.

[67]  Yoshihiro Kubo,et al.  Primary structure and functional expression of a mouse inward rectifier potassium channel , 1993, Nature.

[68]  Hyperpolarization-activated currents in neurons of the rat basolateral amygdala. , 1993, Journal of neurophysiology.

[69]  A. Brown,et al.  Spermine and spermidine as gating molecules for inward rectifier K+ channels. , 1994, Science.

[70]  Hyperpolarization-activated Na(+)-K+ current (Ih) in neocortical neurons is blocked by external proteolysis and internal TEA. , 1994, Journal of neurophysiology.

[71]  N. Kopell,et al.  Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[72]  H. Winn,et al.  Regulation of blood-brain barrier endothelial cells by nitric oxide. , 1994, Circulation research.

[73]  T. Dawson,et al.  Gases as biological messengers: nitric oxide and carbon monoxide in the brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  D DiFrancesco,et al.  Modulation of single hyperpolarization‐activated channels (i(f)) by cAMP in the rabbit sino‐atrial node. , 1994, The Journal of physiology.

[75]  E. Puil,et al.  Mode of firing and rectifying properties of nucleus ovoidalis neurons in the avian auditory thalamus. , 1994, Journal of neurophysiology.

[76]  A hyperpolarization-activated cation conductance in lobster olfactory receptor neurons. , 1994, Journal of neurophysiology.

[77]  R. Gillis,et al.  Hyperpolarization-activated currents, IH and IKIR, in rat dorsal motor nucleus of the vagus neurons in vitro. , 1994, Journal of neurophysiology.

[78]  R. McCarley,et al.  Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. , 1994, Science.

[79]  P. Calabresi,et al.  Properties of the Hyperpolarization‐activated Cation Current lh in Rat Midbrain Dopaminergic Neurons , 1995, The European journal of neuroscience.

[80]  J. Rinzel,et al.  Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.