Sparse reflectivity inversion for nonstationary seismic data

ABSTRACTConventional reflectivity inversion methods are based on a stationary convolution model and theoretically require stationary seismic traces as input (i.e., those free of attenuation and dispersion effects). Reflectivity inversion for nonstationary data, which is typical for field surveys, requires us to first compensate for the earth’s Q-filtering effects by inverse Q filtering. However, the attenuation compensation for inverse Q filtering is inherently unstable, and offers no perfect solution. Thus, we presented a sparse reflectivity inversion method for nonstationary seismic data. We referred to this method as nonstationary sparse reflectivity inversion (NSRI); it makes the novel contribution of avoiding intrinsic instability associated with inverse Q filtering by integrating the earth’s Q-filtering operator into the stationary convolution model. NSRI also avoids time-variant wavelets that are typically required in time-variant deconvolution. Although NSRI is initially designed for nonstationary...

[1]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[2]  Yanghua Wang,et al.  Q analysis on reflection seismic data , 2004 .

[3]  H. Kolsky,et al.  LXXI. The propagation of stress pulses in viscoelastic solids , 1956 .

[4]  Jingnan Li,et al.  Reflectivity inversion for attenuated seismic data: Physical modeling and field data experiments , 2016 .

[5]  Mirko van der Baan,et al.  Bandwidth enhancement: Inverse Q filtering or time-varying Wiener deconvolution? , 2012 .

[6]  Mirko van der Baan,et al.  Time-varying wavelet estimation and deconvolution by kurtosis maximization , 2008 .

[7]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[8]  Wei Huang,et al.  Absorption decomposition and compensation via a two-step scheme , 2015 .

[9]  F. Herrmann,et al.  Robust estimation of primaries by sparse inversion via one-norm minimization , 2013 .

[10]  Wei Zhao,et al.  Enhancing resolution of nonstationary seismic data by molecular-Gabor transform , 2013 .

[11]  A new high resolution AVA inversion using partial spectrum of prestack seismic data , 2013 .

[12]  Don L. Anderson,et al.  Velocity dispersion due to anelasticity; implications for seismology and mantle composition , 1976 .

[13]  S. Bickel,et al.  Plane-wave Q deconvolution , 1985 .

[14]  Measuring velocity dispersion and attenuation in the exploration seismic frequency band , 2009 .

[15]  Yanghua Wang,et al.  Modified Kolsky model for seismic attenuation and dispersion , 2004 .

[16]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[17]  Yanghua Wang,et al.  Quantifying the effectiveness of stabilized inverse Q filtering , 2003 .

[18]  S. Yuan,et al.  Swarm intelligence optimization and its application in geophysical data inversion , 2009 .

[19]  B. Ursin,et al.  Comparison of seismic attenuation models using zero-offset vertical seismic profiling (VSP) data , 2005 .

[20]  Mauricio D. Sacchi,et al.  Thin bed identification using zero-crossing-time stratal slices , 2015 .

[21]  Yanghua Wang,et al.  Inverse Q-filter for seismic resolution enhancement , 2006 .

[22]  S. Levy,et al.  Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .

[23]  P. Gill,et al.  Solving Reduced KKT Systems in Barrier Methods for Linear and Quadratic Programming , 1991 .

[24]  M. Riahi,et al.  Application of Gabor deconvolution to zero-offset VSP data , 2013 .

[25]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[26]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[27]  Fernando S. Moraes,et al.  High-resolution gathers by inverse Q filtering in the wavelet domain , 2013 .

[28]  David C. Henley,et al.  Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data , 2011 .

[29]  M. B. Widess HOW THIN IS A THIN BED , 1973 .

[30]  Sanyi Yuan,et al.  Spectral sparse Bayesian learning reflectivity inversion , 2013 .

[31]  Mrinal K. Sen,et al.  A pre-stack basis pursuit seismic inversion , 2012 .

[32]  Shangxu Wang,et al.  A spectral method for reflectivity estimation , 2012 .

[33]  John P. Castagna,et al.  Layer-thickness determination and stratigraphic interpretation using spectral inversion : Theory and application , 2008 .

[34]  Tadeusz J. Ulrych,et al.  Seismic absorption compensation: A least squares inverse scheme , 2007 .

[35]  S. Yuan,et al.  Phase estimation in bispectral domain based on conformal mapping and applications in seismic wavelet estimation , 2011 .

[36]  Mauricio D. Sacchi,et al.  High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution , 2011 .

[37]  D. Velis Stochastic sparse-spike deconvolution , 2008 .

[38]  Rui Zhang,et al.  Seismic sparse-layer reflectivity inversion using basis pursuit decomposition , 2011 .

[39]  Wagner Moreira Lupinacci,et al.  L1 norm inversion method for deconvolution in attenuating media , 2013 .