The bi-panconnectivity of the hypercube

A bipartite graph is bi-panconnected if an arbitrary pair of vertices x, y are connected by the bi-panconnected paths that include a path of each length s satisfying N-1 ges s ges dist(x, y) and s-dist(x, y) is even, where N is the number of vertices, and dist(x, y) denotes the shortest distance between x and y. Li et al. [Information Processing Letters 87 (2003) 107-110] have shown that the hypercube is bi-panconnected. However, a definite algorithm to generate such paths is still absent. In this paper, we present algorithms to generate the bi-panconnected paths joining an arbitrary pair of vertices in the hypercube.

[1]  Chuan Yi Tang,et al.  Embedding cycles and meshes onto incomplete hypercubes , 2000, Int. J. Comput. Math..

[2]  Jou-Ming Chang,et al.  Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs , 2004 .

[3]  L. Sunil Chandran,et al.  The treewidth and pathwidth of hypercubes , 2006, Discret. Math..

[4]  Hung-Yi Chang,et al.  Embedding Cycles in IEH Graphs , 1997, Inf. Process. Lett..

[5]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[6]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[7]  Vittorio Scarano,et al.  Embedding Graphs onto the Supercube , 1995, IEEE Trans. Computers.

[8]  Gary Chartrand,et al.  Applied and algorithmic graph theory , 1992 .

[9]  Jimmy J. M. Tan,et al.  Hyper hamiltonian laceability on edge fault star graph , 2004, Inf. Sci..

[10]  L. W. Tucker,et al.  Architecture and applications of the Connection Machine , 1988, Computer.

[11]  Brian Alspach,et al.  Edge-pancyclic block-intersection graphs , 1991, Discret. Math..

[12]  Charles L. Seitz,et al.  The cosmic cube , 1985, CACM.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Michel Mollard,et al.  Disjoint cycles and spanning graphs of hypercubes , 2004, Discret. Math..

[15]  Edward M. Reingold,et al.  Efficient generation of the binary reflected gray code and its applications , 1976, CACM.

[16]  Arthur M. Hobbs The square of a block is vertex pancyclic , 1976 .

[17]  Jimmy J. M. Tan,et al.  Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..