NOVEL FRACTAL ANTENNA ARRAYS FOR SATELLITE NETWORKS: CIRCULAR RING SIERPINSKI CARPET ARRAYS OPTIMIZED BY GENETIC ALGORITHMS

A novel fractal antenna-array type is proposed. The design is based on the Sierpinski rectangular carpet concept. However, the generator is a circular ring area, fllled with radiating elements, so the higher stages of the fractal development produce large arrays of circular rings which, besides the high directivity, have the advantage of the almost uniform azimuthal radiation pattern, attribute that many applications require. The introduced arrays can operate as direct radiating multi-beam phased arrays and meet the requirements of satellite communications links: high End of Coverage (EOC) directivity, low Side Lobe Level (SLL) and high Career to Interference ratio (C=I). These operational indices were further optimized by a synthesized multi-objective and multi-dimensional Genetic Algorithm (GA) which, additionally, gave arrays no more than 120 elements.

[1]  Ying Guan,et al.  A NOVEL IGA-EDSPSO HYBRID ALGORITHM FOR THE SYNTHESIS OF SPARSE ARRAYS , 2009 .

[2]  Tommaso Isernia,et al.  A DETERMINISTIC APPROACH TO THE SYNTHESIS OF PENCIL BEAMS THROUGH PLANAR THINNED ARRAYS , 2010 .

[3]  R. Haupt,et al.  Optimized Weighting of Uniform Subarrays of Unequal Sizes , 2007, IEEE Transactions on Antennas and Propagation.

[4]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[5]  Yahya Rahmat-Samii,et al.  Electromagnetic Optimization by Genetic Algorithms , 1999 .

[6]  Jordi Romeu Robert,et al.  On the behavior of the Sierpinski multiband fractal antenna , 1998 .

[7]  Filiz Güneş,et al.  The Multi-Objective Optimization of Non-Uniform Linear Phased Arrays Using the Genetic Algorithm , 2009 .

[8]  Tommaso Isernia,et al.  DIRECT RADIATING ARRAYS FOR SATELLITE COMMUNICATIONS VIA APERIODIC TILINGS , 2009 .

[9]  Giovanni Toso,et al.  Sparse and thinned arrays for multiple beam satellite applications , 2007 .

[10]  J.S. Petko,et al.  The evolution of optimal linear polyfractal arrays using genetic algorithms , 2005, IEEE Transactions on Antennas and Propagation.

[11]  D. Werner,et al.  An overview of fractal antenna engineering research , 2003 .

[12]  Abolfazl Azari,et al.  ULTRA WIDEBAND FRACTAL MICROSTRIP ANTENNA DESIGN , 2008 .

[13]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[14]  D. Werner,et al.  The theory and design of fractal antenna arrays , 1999 .

[15]  D.H. Werner,et al.  Thinning of aperiodic antenna arrays for low side-lobe levels and broadband operation using genetic algorithms , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[16]  John N. Sahalos,et al.  On the Design of Direct Radiating Antenna Arrays with Reduced Number of Controls for Satellite Communications , 2009, MOBILIGHT.

[17]  Piero Angeletti,et al.  Aperiodic arrays for space applications: A combined amplitude/density synthesis approach , 2009, European Conference on Antennas and Propagation.

[18]  G. Golino,et al.  Improved genetic algorithm for the design of the optimal antenna division in sub-arrays: a multi-objective genetic algorithm , 2005, IEEE International Radar Conference, 2005..

[19]  V. Galdi,et al.  Radiation properties of planar antenna arrays based on certain categories of aperiodic tilings , 2005, IEEE Transactions on Antennas and Propagation.

[20]  Katherine Siakavara,et al.  A multi‐wideband microstrip antenna designed by the square‐curve fractal technique , 2004 .

[21]  R. Pous,et al.  Fractal design of multiband and low side-lobe arrays , 1996 .

[22]  C. Mangenot,et al.  GA optimized thinned hexagonal arrays for aatellite applications , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[23]  A. Razavi,et al.  THINNED ARRAYS USING PATTERN SEARCH ALGORITHMS , 2008 .

[24]  Mohammadnaghi Azarmanesh,et al.  A NOVEL BROADBAND FRACTAL SIERPINSKI SHAPED, MICROSTRIP ANTENNA , 2008, Progress In Electromagnetics Research C.

[25]  T. Ganatsos,et al.  Modification of the Radiation Patterns of Higher Order Modes of Triangular Printed Antennas by EBG Ground Planes , 2009, IEEE Antennas and Wireless Propagation Letters.

[26]  Raj Mittra,et al.  Frontiers in electromagnetics , 1999 .

[27]  P.L. Werner,et al.  Optimization of Peano-Gosper fractal arrays for broadband performance using genetic algorithms to eliminate grating lobes during scanning , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[28]  Randy L. Haupt Reducing grating lobes due to subarray amplitude tapering , 1985, 1985 Antennas and Propagation Society International Symposium.

[29]  G. K. Mahanti,et al.  SYNTHESIS OF THINNED LINEAR ANTENNA ARRAYS WITH FIXED SIDELOBE LEVEL USING REAL-CODED GENETIC ALGORITHM , 2007 .

[30]  Andrea Massa,et al.  Sidelobe reduction in sparse linear arrays by genetic algorithms , 2002 .

[31]  Abolfazl Azari,et al.  Ultra wideband fractal antenna design , 2008 .

[32]  Xiao-Wei Shi,et al.  Design of a Fractal Dual-Polarized Aperture Coupled Microstrip Antenna , 2009 .

[33]  Katherine Siakavara,et al.  Enhanced fractal microstrip‐antenna performance by using photonic‐bandgap fractal ground plane , 2004 .

[34]  C. Mangenot,et al.  Spatial density tapered sunflower antenna array , 2009, 2009 3rd European Conference on Antennas and Propagation.

[35]  P. L. Werner,et al.  A self-similar fractal radiation pattern synthesis technique for reconfigurable multiband arrays , 2003 .

[36]  Jordi Romeu,et al.  On the behavior of the Sierpinski multiband fractal antenna , 1998 .

[37]  John N. Sahalos,et al.  On the design of a Direct Radiating Array by using the fractal technique , 2009, 2009 3rd European Conference on Antennas and Propagation.