Universal character and large N factorization in topological gauge/string theory

[1]  S. Minabe,et al.  Flop invariance of the topological vertex , 2006, math/0601352.

[2]  Richard H. Price,et al.  Black Holes , 1997 .

[3]  So Matsuura Localization on D-brane and Gauge theory/Matrix model , 2006 .

[4]  M. Aganagic,et al.  Branes, black holes and topological strings on toric Calabi-Yau manifolds , 2005, hep-th/0512245.

[5]  N. Caporaso,et al.  Topological strings and large N phase transitions. I. Nonchiral expansion of q-deformed Yang-Mills theory , 2005, hep-th/0511043.

[6]  Jian Zhou On a deformed topological vertex , 2005, math/0504460.

[7]  C. Vafa,et al.  BPS microstates and the open topological string wave function , 2005, hep-th/0504054.

[8]  H. Ooguri,et al.  Black Holes, q-Deformed 2d Yang-Mills, and Non-perturbative Topological Strings , 2004, hep-th/0411280.

[9]  C. Vafa,et al.  The Topological Vertex , 2003, hep-th/0305132.

[10]  A. Iqbal,et al.  The vertex on a strip , 2004, hep-th/0410174.

[11]  Chiu-Chu Melissa Liu,et al.  A mathematical theory of the topological vertex , 2004, math/0408426.

[12]  C. Vafa Two Dimensional Yang-Mills, Black Holes and Topological Strings , 2004, hep-th/0406058.

[13]  H. Ooguri,et al.  Black hole attractors and the topological string , 2004, hep-th/0405146.

[14]  C. Vafa,et al.  All Loop Topological String Amplitudes from Chern-Simons Theory , 2002, hep-th/0206164.

[15]  A. Okounkov,et al.  Quantum Calabi-Yau and Classical Crystals , 2003, hep-th/0309208.

[16]  Sascha G. Lukac,et al.  THE HOMFLY POLYNOMIAL OF THE DECORATED HOPF LINK , 2001, math/0108011.

[17]  R. Gopakumar,et al.  On the Gauge Theory/Geometry Correspondence , 1998, hep-th/9811131.

[18]  S. Teukolsky,et al.  Black Holes , 1998, gr-qc/9808035.

[19]  D. Gross,et al.  Twists and Wilson Loops in the String Theory of Two Dimensional QCD , 1993, hep-th/9303046.

[20]  D. Gross Two-dimensional QCD is a string theory , 1992, hep-th/9212149.

[21]  K. Koike On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters , 1989 .

[22]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .