Estimation of global sensitivity indices for models with dependent variables

Abstract A novel approach for estimation variance-based sensitivity indices for models with dependent variables is presented. Both the first order and total sensitivity indices are derived as generalizations of Sobolʼ sensitivity indices. Formulas and Monte Carlo numerical estimates similar to Sobolʼ formulas are derived. A copula-based approach is proposed for sampling from arbitrary multivariate probability distributions. A good agreement between analytical and numerical values of the first order and total indices for considered test cases is obtained. The behavior of sensitivity indices depends on the relative predominance of interactions and correlations. The method is shown to be efficient and general.

[1]  Fabrice Gamboa,et al.  Local Polynomial Estimation for Sensitivity Analysis on Models With Correlated Inputs , 2008, Technometrics.

[2]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[3]  A. Kiureghian,et al.  Multivariate distribution models with prescribed marginals and covariances , 1986 .

[4]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[5]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[6]  A E Ades,et al.  Evidence synthesis, parameter correlation and probabilistic sensitivity analysis. , 2006, Health economics.

[7]  A. Saltelli,et al.  Reliability Engineering and System Safety , 2008 .

[8]  Julien Jacques,et al.  Sensitivity analysis in presence of model uncertainty and correlated inputs , 2006, Reliab. Eng. Syst. Saf..

[9]  S. Ferson,et al.  Correlations, dependency bounds and extinction risks , 1995 .

[10]  I. Sobol,et al.  Global sensitivity indices for nonlinear mathematical models. Review , 2005 .

[11]  Stefano Tarantola,et al.  Estimating the approximation error when fixing unessential factors in global sensitivity analysis , 2007, Reliab. Eng. Syst. Saf..

[12]  D. Steinberg,et al.  Technometrics , 2008 .

[13]  A. Saltelli,et al.  On the Relative Importance of Input Factors in Mathematical Models , 2002 .

[14]  Michael G. Neubert,et al.  Predictability and nonlinear modelling in natural sciences and economics , 1996 .

[15]  Holger Keitel,et al.  Uncertainty and sensitivity analysis of creep models for uncorrelated and correlated input parameters , 2010 .

[16]  E. Luciano,et al.  Copula methods in finance , 2004 .

[17]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[18]  A. Saltelli,et al.  Sensitivity analysis for chemical models. , 2005, Chemical reviews.

[19]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[20]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[21]  Nilay Shah,et al.  The identification of model effective dimensions using global sensitivity analysis , 2011, Reliab. Eng. Syst. Saf..

[22]  Marco Ratto,et al.  Global Sensitivity Analysis , 2008 .

[23]  S. Rahman Reliability Engineering and System Safety , 2011 .

[24]  B. M. Fulk MATH , 1992 .

[25]  I. Sobol,et al.  On quasi-Monte Carlo integrations , 1998 .

[26]  Herschel Rabitz,et al.  An efficient algorithm to accelerate the discovery of complex material formulations. , 2010, The Journal of chemical physics.

[27]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[28]  George Z. Gertner,et al.  Uncertainty and sensitivity analysis for models with correlated parameters , 2008, Reliab. Eng. Syst. Saf..

[29]  Herschel Rabitz,et al.  Sixth International Conference on Sensitivity Analysis of Model Output Global Sensitivity Analysis for Systems with Independent and / or Correlated Inputs , 2013 .

[30]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.