Scale-Space Analysis of Discrete Filtering over Arbitrary Triangulated Surfaces

Discrete filtering of information over triangulated surfaces has proved very useful in computer graphics applications. This technique is based on diffusion equations and has been extensively applied to image processing, harmonic map regularization and texture generating, etc. [C. L. Bajaj and G. Xu, ACM Trans. Graph., 22 (2003), pp. 4-32], [C. Wu, J. Deng, and F. Chen, IEEE Trans. Vis. Comput. Graph., 14 (2008), pp. 666-679]. However, little has been done on analysis (especially quantitative analysis) of the behavior of these filtering procedures. Since in applications mesh surfaces can be of arbitrary topology and the filtering can be nonlinear and even anisotropic, the analysis of the quantitative behavior is a very difficult issue. In this paper, we first present the discrete linear, nonlinear, and anisotropic filtering schemes via discretizing diffusion equations with appropriately defined differential operators on triangulated surfaces, and then use concepts of discrete scale-spaces to describe these filtering procedures and analyze their properties respectively. Scale-space properties such as existence and uniqueness, continuous dependence on initial value, discrete semigroup property, grey level shift invariance and conservation of total grey level, information reduction (also known as topology simplification), and constant limit behavior have been proved. In particular, the information reduction property is analyzed by eigenvalue and eigenvector analysis of matrices. Different from the direct observation of the local filtering to the diffusion equations and other interpretation methods based on wholly global quantities such as energy and entropy, this viewpoint helps us understand the filtering both globally (information reduction as image components shrink) and locally (how the image component contributes to its shrink rate). With careful consideration of the correspondence between eigenvalues and eigenvectors and their features, differences between linear and nonlinear filtering, as well as between isotropic and anisotropic filtering, are discussed. We also get some stability results of the filtering schemes. Several examples are provided to illustrate the properties.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  G. Poole,et al.  A Survey on M-Matrices , 1974 .

[3]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[4]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[7]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Oscar Firschein,et al.  Readings in computer vision: issues, problems, principles, and paradigms , 1987 .

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Xuecheng Tai,et al.  A parallel splitting up method and its application to Navier-Stokes equations , 1991 .

[13]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[15]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[16]  J. Weickert Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor , 1994 .

[17]  Kaleem Siddiqi,et al.  Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[19]  J. Sponring The entropy of scale-space , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[20]  Tony Lindeberg Kth Scale-space: A framework for handling image structures at multiple scales , 1996 .

[21]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[22]  J. Weickert Nonlinear diffusion scale-spaces: From the continuous to the discrete setting , 1996 .

[23]  Joachim Weickert,et al.  A semidiscrete nonlinear scale-space theory and its relation to the Perona - Malik paradox , 1996, TFCV.

[24]  Tony Lindeberg,et al.  Scale-space theory : A framework for handling image structures at multiple scales , 1996 .

[25]  Jon Sporring,et al.  The entropy of scale-space , 1996, ICPR.

[26]  Satyanad Kichenassamy,et al.  The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..

[27]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[28]  Ron Kimmel,et al.  Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[29]  T. Lindeberg On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.

[30]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[31]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[32]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[33]  Jon Sporring,et al.  Segmenting by Compression Using Linear Scale-Space and Watersheds , 1999, Scale-Space.

[34]  U. Clarenz,et al.  Anisotropic geometric diffusion in surface processing , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[35]  H. Ehlers LECTURERS , 1948, Statistics for Astrophysics.

[36]  Luiz Velho,et al.  Discrete scale spaces via heat equation , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[37]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[38]  Wolfgang Effelsberg,et al.  Fast Implicit Active Contour Models , 2002, DAGM-Symposium.

[39]  Luc Florack,et al.  Understanding and Modeling the Evolution of Critical Points under Gaussian Blurring , 2002, ECCV.

[40]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[41]  R. Stollberger,et al.  Nonlinear anisotropic diffusion filtering for multiscale edge enhancement , 2002 .

[42]  Olivier Devillers,et al.  Progressive lossless compression of arbitrary simplicial complexes , 2002, SIGGRAPH.

[43]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[44]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[45]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[46]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[47]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[48]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[49]  Andy M. Yip,et al.  Recent Developments in Total Variation Image Restoration , 2004 .

[50]  Luc Florack,et al.  The Topological Structure of Scale-Space Images , 2000, Journal of Mathematical Imaging and Vision.

[51]  Tony Lindeberg,et al.  Scale-space behaviour of local extrema and blobs , 1992, Journal of Mathematical Imaging and Vision.

[52]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[53]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[54]  Max A. Viergever,et al.  Scale Space Hierarchy , 2003, Journal of Mathematical Imaging and Vision.

[55]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[56]  Pierre Vandergheynst,et al.  Multiresolution segmentation of natural images: from linear to nonlinear scale-space representations , 2004, IEEE Transactions on Image Processing.

[57]  Yizhou Yu,et al.  Inviscid and incompressible fluid simulation on triangle meshes , 2004, Comput. Animat. Virtual Worlds.

[58]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[59]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[60]  Luc Florack,et al.  The Relevance of Non-Generic Events in Scale Space Models , 2002, International Journal of Computer Vision.

[61]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[62]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[63]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[64]  Gang Lin,et al.  An improved vertex caching scheme for 3D mesh rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[65]  Ligang Liu,et al.  Dual Laplacian editing for meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[66]  Atsushi Imiya,et al.  Gradient Structure of Image in Scale Space , 2007, Journal of Mathematical Imaging and Vision.

[67]  Jiansong Deng,et al.  Diffusion Equations over Arbitrary Triangulated Surfaces for Filtering and Texture Applications , 2008, IEEE Transactions on Visualization and Computer Graphics.