Introduction To BiCMOS

BiCMOS technology combines Bipolar and CMOS transistors in a single integrated circuit. By retaining the benefits of Bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with speed-power-density performance previously unattainable with either technology individually. CMOS technology maintains an advantage over Bipolar in power dissipation, noise margins, packing density, and the ability to integrate large complex functions with high yields. Bipolar technology has advantages over CMOS in switching speed, current drive per unit area, noise performance, analog capability, and I/O speed. This last point is especially significant given the growing importance of ECL I/O, historically the exclusive domain of Bipolar technology, for high speed systems [1.1]. It follows that BiCMOS technology offers the advantages of: 1) improved speed over CMOS, 2) lower power dissipation than Bipolar (which simplifies packaging and board requirements), 3) flexible I/Os (TTL, CMOS, or ECL), 4) high performance analog, and 5) latchup immunity [1.2]. Compared to CMOS, the reduced dependence on capacitive load and process/temperature variations, and the multiple circuit configurations and I/Os possible with BiCMOS greatly enhance design flexibility and can lead to reduced design cycle time. The inherent robustness of BiCMOS with respect to temperature and process variations also reduces the variability of final electrical parameters resulting in a higher percentage of prime units, an important economic consideration.

[1]  S. Horiguchi,et al.  A BiCMOS channelless masterslice with on-chip voltage converter , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[2]  A.R. Alvarez,et al.  Lateral DMOS transistor optimized for high voltage BIMOS applications , 1983, 1983 International Electron Devices Meeting.

[3]  H. Momose,et al.  A 1.0µm N-well CMOS/Bipolar technology for VLSI circuits , 1983, 1983 International Electron Devices Meeting.

[4]  D. A. Bell,et al.  0.5 micron CMOS for high performance at 3.3 V , 1988, Technical Digest., International Electron Devices Meeting.

[5]  Katsuhiko Sato,et al.  An 8 ns 1 Mb ECL BiCMOS SRAM , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[6]  S. Konaka,et al.  HSST BiCMOS technology with 26 ps ECL and 45 ps 2 V CMOS inverter , 1990, International Technical Digest on Electron Devices.

[7]  K. Shibayama,et al.  Laboratory and factory automation for VLSI development and mass production , 1988, Technical Digest., International Electron Devices Meeting.

[8]  R. Krebs,et al.  Merged CMOS/bipolar current switch logic (MCSL) , 1989 .

[9]  K. Ziemann,et al.  Merged CMOS/bipolar current switch logic , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[10]  Makoto Suzuki,et al.  A 3.5 ns, 500 mW 16 kb BiCMOS ECL RAM , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[11]  R. A. Kertis,et al.  A 12ns 256k Bicmos Sram , 1988, 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers.

[12]  T. Ikeda,et al.  Performance and structures of scaled-down bipolar devices merged with CMOSFETs , 1984, 1984 International Electron Devices Meeting.

[13]  Takashi Hotta,et al.  CMOS/bipolar circuits for 60-MHz digital processing , 1986 .

[14]  Charles G. Sodini,et al.  A framework to evaluate technology and device design enhancements for MOS integrated circuits , 1989 .

[15]  Takashi Hotta,et al.  A 70-MHz 32-b microprocessor with 1.0- mu m BiCMOS macrocell library , 1989 .

[16]  Hung Chang Lin,et al.  Complementary MOS—Bipolar transistor structure , 1969 .

[17]  A.M. Voshchenkov,et al.  A high speed super self-aligned bipolar-CMOS technology , 1987, 1987 International Electron Devices Meeting.

[18]  M. A. Polinsky,et al.  CMOS-bipolar monolithic integrated-circuit technology , 1970 .

[19]  N. Tamba,et al.  An 8ns 256k Bicmos Ram , 1988, 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers.

[20]  R. Kopl,et al.  Megaelectronvolt phosphorus implantation for bipolar devices , 1988 .

[21]  L. Wissel,et al.  Can CMOS resist the BiCMOS challenge? , 1991, Proceedings of the IEEE 1991 Custom Integrated Circuits Conference.

[22]  Katsuhiko Hieda,et al.  Three-dimensional analysis of subthreshold swing and transconductance for fully-recessed-oxide (trench) isolated 1/4- mu m-width MOSFETs , 1988 .

[23]  J.-H. Chang,et al.  A BiCMOS 50 MHz cache controller for a superscalar microprocessor , 1992, 1992 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[24]  A. R. Alvarez,et al.  Bi-CMOS technology for semi-custom integrated circuits , 1988, Proceedings of the IEEE 1988 Custom Integrated Circuits Conference.

[25]  I. Masuda,et al.  Perspective on BiCMOS VLSIs , 1988 .

[26]  Yoji Nishio,et al.  A BiCMOS logic gate with positive feedback , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[27]  Richard A. Chapman,et al.  An 8 ns BiCMOS 1 Mb ECL SRAM with a configurable memory array size , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[28]  James D. Plummer,et al.  A monolithic 200-V CMOS analog switch , 1976 .

[29]  G. P. Rosseel,et al.  Influence of device parameters on the switching speed of BiCMOS buffers , 1989 .

[30]  M.S. Adler,et al.  New high voltage IC technology , 1984, 1984 International Electron Devices Meeting.

[31]  T. Yamaguchi,et al.  Submicron bipolar-CMOS technology using 16 GHz f/sub T/ double poly-Si bipolar devices , 1988, Technical Digest., International Electron Devices Meeting.

[32]  H. Momose,et al.  0.5 Micron BICMOS technology , 1987, 1987 International Electron Devices Meeting.