Dynamic control of light emission faster than the lifetime limit using VO2 phase-change

Modulation is a cornerstone of optical communication, and as such, governs the overall speed of data transmission. Currently, the two main strategies for modulating light are direct modulation of the excited emitter population (for example, using semiconductor lasers) and external optical modulation (for example, using Mach–Zehnder interferometers or ring resonators). However, recent advances in nanophotonics offer an alternative approach to control spontaneous emission through modifications to the local density of optical states. Here, by leveraging the phase-change of a vanadium dioxide nanolayer, we demonstrate broadband all-optical direct modulation of 1.5 μm emission from trivalent erbium ions more than three orders of magnitude faster than their excited state lifetime. This proof-of-concept demonstration shows how integration with phase-change materials can transform widespread phosphorescent materials into high-speed optical sources that can be integrated in monolithic nanoscale devices for both free-space and on-chip communication.

[1]  Rashid Zia,et al.  Spectral tuning by selective enhancement of electric and magnetic dipole emission. , 2011, Physical review letters.

[2]  Peter J. Winzer,et al.  Advanced Optical Modulation Formats , 2006, Proceedings of the IEEE.

[3]  S. Noda,et al.  Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design , 2001, Science.

[4]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[5]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[6]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[7]  Jian Shi,et al.  Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping , 2014, Nature Communications.

[8]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.

[9]  N. Zheludev,et al.  Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.

[10]  Mingming Jiang,et al.  Quantifying and controlling the magnetic dipole contribution to 1.5-μm light emission in erbium-doped yttrium oxide , 2014, 1402.3717.

[11]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[12]  Armando Rúa,et al.  Insulator-to-metal phase transition and recovery processes in V O 2 thin films after femtosecond laser excitation , 2007 .

[13]  You Zhou,et al.  Mott Memory and Neuromorphic Devices , 2015, Proceedings of the IEEE.

[14]  J. S. Aitchison,et al.  Voltage-Controlled Switching and Thermal Effects in VO2 Nano-Gap Junctions , 2014 .

[15]  Zhi Liu,et al.  Role of joule heating effect and bulk-surface phases in voltage-driven metal-insulator transition in VO2 crystal , 2013 .

[16]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[17]  Joyeeta Nag,et al.  Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. , 2014, Nano letters.

[18]  R. Rizk,et al.  Structural factors impacting carrier transport and electroluminescence from Si nanocluster-sensitized Er ions. , 2012, Optics express.

[19]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[20]  R. Zia,et al.  Direct modulation of lanthanide emission at sub-lifetime scales. , 2013, Nano letters.

[21]  Judson D Ryckman,et al.  Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. , 2013, Optics express.

[22]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[23]  R. Losch,et al.  10-Gb/s standard fiber transmission using directly modulated 1.55-μm quantum-well DFB lasers , 1995, IEEE Photonics Technology Letters.

[24]  Rashid Zia,et al.  Quantifying the magnetic nature of light emission , 2012, Nature Communications.

[25]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[26]  R. Zia,et al.  Probing the Combined Electromagnetic Local Density of Optical States with Quantum Emitters Supporting Strong Electric and Magnetic Transitions. , 2013, Physical review letters.

[27]  S. Arahira,et al.  30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser , 1997, IEEE Photonics Technology Letters.

[28]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[29]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[30]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[31]  Richard Schatz,et al.  30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 /spl mu/m wavelength , 1997 .

[32]  A. Crunteanu,et al.  High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes , 2012 .

[33]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[34]  Xiaonan Chen,et al.  Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches , 2013, IEEE Electron Device Letters.

[35]  Shriram Ramanathan,et al.  Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry , 2008 .

[36]  Joyce K. S. Poon,et al.  Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions , 2014 .

[37]  R. Zia,et al.  Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths , 2012, 1208.2642.

[38]  R. Rizk,et al.  Electroluminescence efficiencies of erbium in silicon-based hosts , 2013 .

[39]  Gang Xiao,et al.  Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO. , 2013, ACS nano.

[40]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .