Equivalent and absolutely continuous measure changes for jump-diffusion processes

We provide explicit sufficient conditions for absolute continuity and equivalence between the distributions of two jump-diffusion processes that can explode and be killed by a potential.

[1]  Kiyosi Itô,et al.  Transformation of Markov processes by multiplicative functionals , 1965 .

[2]  D. Dawson Equivalence of Markov processes , 1968 .

[3]  Hiroshi Kunita,et al.  Absolute Continuity of Markov Processes and Generators , 1969, Nagoya Mathematical Journal.

[4]  L. A. Shepp,et al.  Conditions for absolute continuity between a certain pair of probability measures , 1970 .

[5]  A. Novikov On an Identity for Stochastic Integrals , 1973 .

[6]  H. Kunita Absolute continuity of Markov processes , 1976 .

[7]  N. Kazamaki,et al.  On a problem of Girsanov , 1977 .

[8]  D. Lépingle,et al.  Sur l'intégrabilité uniforme des martingales exponentielles , 1978 .

[9]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[10]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[11]  On absolute continuity of probability measures for markov-itô processes , 1980 .

[12]  J. Pitman,et al.  A decomposition of Bessel Bridges , 1982 .

[13]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[14]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[15]  N. Kazamaki Continuous Exponential Martingales and Bmo , 1994 .

[16]  Tina Hviid Rydberg A note on the existence of unique equivalent martingale measures in a Markovian setting , 1997, Finance Stochastics.

[17]  C. Sin Complications with stochastic volatility models , 1998, Advances in Applied Probability.

[18]  Jaeho Cho A Theory of the Term Structure of Interest Rates Under Non-expected Intertemporal Preferences , 1998 .

[19]  L. Rogers,et al.  Complete Models with Stochastic Volatility , 1998 .

[20]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[21]  Zbigniew Palmowski,et al.  The technique of the exponential change of measure for Markov processes , 2002 .

[22]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[23]  M. Yor Exponential Functionals of Brownian Motion and Related Processes , 2001 .

[24]  Jan Kallsen,et al.  The cumulant process and Esscher's change of measure , 2002, Finance Stochastics.

[25]  F. Delbaen,et al.  A Note on Option Pricing for the Constant Elasticity of Variance Model , 2002 .

[26]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[27]  F. Delbaen,et al.  No Arbitrage Condition for Positive Diffusion Price Processes , 2002 .

[28]  D. Stroock Markov processes from K. Itô's perspective , 2003 .

[29]  Patrick Cheridito,et al.  Market price of risk speci-fications for a ne models: theory and evidence , 2004 .

[30]  C. Heyde,et al.  On the martingale property of stochastic exponentials , 2004, Journal of Applied Probability.

[31]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[32]  Li Chen,et al.  A simple model for credit migration and spread curves , 2005, Finance Stochastics.

[33]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .