Compressive System Identification in the Linear Time-Invariant framework

Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study.

[1]  Xavier Bombois,et al.  Identification and the Information Matrix: How to Get Just Sufficiently Rich? , 2009, IEEE Transactions on Automatic Control.

[2]  E.J. Candes Compressive Sampling , 2022 .

[3]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[4]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[5]  Ali Cafer Gürbüz,et al.  Compressive sensing for subsurface imaging using ground penetrating radar , 2009, Signal Process..

[6]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[7]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[8]  Lennart Ljung,et al.  System identification toolbox for use with MATLAB , 1988 .

[9]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[12]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[13]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .

[14]  Håkan Hjalmarsson,et al.  Sparse estimation based on a validation criterion , 2011, IEEE Conference on Decision and Control and European Control Conference.

[15]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[16]  H. Akaike A new look at the statistical model identification , 1974 .

[17]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[18]  H. Leeb,et al.  Sparse Estimators and the Oracle Property, or the Return of Hodges' Estimator , 2007, 0704.1466.

[19]  M. Yuan,et al.  On the non‐negative garrotte estimator , 2007 .

[20]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[23]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[24]  Jacob Roll,et al.  The use of nonnegative garrote for order selection of ARX models , 2008, 2008 47th IEEE Conference on Decision and Control.

[25]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[26]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[27]  Tyrone L. Vincent,et al.  Compressive System Identification of LTI and LTV ARX models , 2011, IEEE Conference on Decision and Control and European Control Conference.

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .