Constrained paths in the flip-graph of regular triangulations

[1]  T. Liebling,et al.  Three-dimensional distinct element simulation of spherocylinder crystallization , 2005 .

[2]  J.-A. Ferrez,et al.  Dynamic triangulations for efficient detection of collisions between spheres with applications in granular media simulations , 2002 .

[3]  F. Santos Non-connected toric Hilbert schemes , 2002, math/0204044.

[4]  F. Santos A point set whose space of triangulations is disconnected , 2000 .

[5]  Joseph O'Rourke,et al.  Computational geometry column 32 , 1997, Int. J. Comput. Geom. Appl..

[6]  Xinjian Xue,et al.  The Laguerre model for grain growth in three dimensions , 1997 .

[7]  Tomonari Masada,et al.  Enumeration of regular triangulations , 1996, SCG '96.

[8]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[9]  Herbert Edelsbrunner,et al.  Incremental topological flipping works for regular triangulations , 1992, SCG '92.

[10]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[11]  H. Edelsbrunner,et al.  Tetrahedrizing Point Sets in Three Dimensions , 1988, ISSAC.

[12]  C. Lawson Software for C1 interpolation , 1977 .

[13]  T. Liebling,et al.  Numerical and experimental investigation of alignment and segregation of vibrated granular media composed of rods and spheres , 2005 .

[14]  T. Liebling,et al.  A generalization of distinct element method to tridimensional particles with complex shapes , 2005 .

[15]  Lionel Pournin,et al.  On the behavior of spherical and non-spherical grain assemblies, its modeling and numerical simulation , 2005 .

[16]  A. De Loera,et al.  Triangulations Of Point Sets Applications, Structures, Algorithms , 2003 .

[17]  Francisco Santos,et al.  Triangulations with Very Few Geometric Bistellar Neighbors , 2000, Discret. Comput. Geom..

[18]  Jesús A. De Loera,et al.  The Number of Geometric Bistellar Neighbors of a Triangulation , 1999, Discret. Comput. Geom..

[19]  P. Wilson,et al.  DISCRIMINANTS, RESULTANTS AND MULTIDIMENSIONAL DETERMINANTS (Mathematics: Theory and Applications) , 1996 .