Structure sensitivity in the photocatalytic reduction of CO2 with Co3O4 catalysts

[1]  H. Cao,et al.  Dual Role of G-C3n4 Microtubes in Enhancing Photocatalytic Co2 Reduction of Co3o4 Nanoparticles , 2022, SSRN Electronic Journal.

[2]  Jianghong Zhao,et al.  Oxygen vacancies in Co3O4 promote CO2 photoreduction , 2022, Applied Catalysis B: Environmental.

[3]  Z. Fogarassy,et al.  Nature of the Pt-Cobalt-Oxide surface interaction and its role in the CO2 Methanation , 2022, Applied Surface Science.

[4]  K. Pant,et al.  Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation , 2021 .

[5]  Yihe Zhang,et al.  Synergistic Polarization Engineering on Bulk and Surface for Boosting CO2 Photoreduction. , 2021, Angewandte Chemie.

[6]  Xiulian Pan,et al.  Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis. , 2021, Chemical reviews.

[7]  W. Shen,et al.  Theoretical insight into single Rh atoms anchored on N-doped γ-graphyne as an excellent bifunctional electrocatalyst for the OER and ORR: electronic regulation of graphitic nitrogen. , 2021, Nanoscale.

[8]  Á. Kukovecz,et al.  Complexity of a Co3O4 System under Ambient-Pressure CO2 Methanation: Influence of Bulk and Surface Properties on the Catalytic Performance , 2021 .

[9]  M. Sui,et al.  Facet-Dependent Cobalt Ion Distribution on the Co3O4 Nanocatalyst Surface. , 2020, The journal of physical chemistry letters.

[10]  Zong-lin Yi,et al.  Rational electronic control of carbon dioxide reduction over cobalt oxide , 2020 .

[11]  Chunlei Huang,et al.  Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions , 2020 .

[12]  Shoubhik Das,et al.  Catalytic transformation of CO2 into C1 chemicals using hydrosilanes as a reducing agent , 2020 .

[13]  Huiqiu Shi,et al.  Facet‐Dependent Activity of Co3O4 Catalyst for C3H8 Combustion , 2019, ChemCatChem.

[14]  Hyunjoo J. Lee,et al.  Highly Water-Resistant La-Doped Co3O4 Catalyst for CO Oxidation , 2019, ACS Catalysis.

[15]  Dori Yosef Kalai,et al.  Mesoporous manganese-cobalt oxide spinel catalysts for CO2 hydrogenation to methanol , 2019, Journal of CO2 Utilization.

[16]  Lei Li,et al.  Hollow-Structural Ag/Co3O4 Nanocatalyst for CO Oxidation: Interfacial Synergistic Effect , 2019, ACS Applied Nano Materials.

[17]  Yongdan Li,et al.  Effect of Ce and La dopants in Co3O4 nanorods on the catalytic activity of CO and C3H6 oxidation , 2019, Catalysis Science & Technology.

[18]  Q. Wang,et al.  Crystal-Plane-Dependent Fischer–Tropsch Performance of Cobalt Catalysts , 2018, ACS Catalysis.

[19]  W. Hu,et al.  Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis , 2018 .

[20]  Xinchen Wang,et al.  A perovskite oxide LaCoO3 cocatalyst for efficient photocatalytic reduction of CO2 with visible light. , 2018, Chemical communications.

[21]  E. Longo,et al.  Theoretical approach for determining the relation between the morphology and surface magnetism of Co 3 O 4 , 2017 .

[22]  Dianzeng Jia,et al.  Solvent-Free Chemical Approach to Synthesize Various Morphological Co3O4 for CO Oxidation. , 2017, ACS applied materials & interfaces.

[23]  Z. Tang,et al.  Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible‐Light Photocatalytic Reduction of CO2 , 2016, Advanced materials.

[24]  Claudio Cometto,et al.  Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes. , 2016, Journal of the American Chemical Society.

[25]  Jinlong Gong,et al.  CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts , 2016 .

[26]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[27]  Qinghong Zhang,et al.  Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. , 2016, Chemical communications.

[28]  J. Wilcox,et al.  Enhancing Catalytic CO Oxidation over Co3O4 Nanowires by Substituting Co2+ with Cu2+ , 2015 .

[29]  Mietek Jaroniec,et al.  Semiconductor-based photocatalytic CO2 conversion , 2015 .

[30]  X. Bao,et al.  Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. , 2015, Journal of the American Chemical Society.

[31]  S. Dou,et al.  Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries , 2014, Scientific Reports.

[32]  Kimfung Li,et al.  A critical review of CO2 photoconversion: Catalysts and reactors , 2014 .

[33]  Jianguo Wang,et al.  Size-Dependent Halogenated Nitrobenzene Hydrogenation Selectivity of Pd Nanoparticles , 2014 .

[34]  Xinchen Wang,et al.  Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions. , 2014, Angewandte Chemie.

[35]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[36]  G. Lu,et al.  Highly Active and Stable Co3O4/ZSM-5 Catalyst for Propane Oxidation: Effect of the Preparation Method , 2013 .

[37]  G. Lu,et al.  Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature , 2012 .

[38]  A. Selloni,et al.  Water Adsorption and Oxidation at the Co3O4 (110) Surface , 2012 .

[39]  B. Weckhuysen,et al.  Co3O4-SiO2 nanocomposite: a very active catalyst for CO oxidation with unusual catalytic behavior. , 2011, Journal of the American Chemical Society.

[40]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[41]  M. Salavati‐Niasari,et al.  Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate , 2009 .

[42]  T. He,et al.  Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals , 2005 .

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  E. Iglesia,et al.  Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides , 1998 .

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Zhang Lin,et al.  Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering , 2020 .

[47]  E. Roduner Understanding catalysis. , 2014, Chemical Society reviews.