Dynamic heat transfer performance study of steam generator based on distributed parameter method

Abstract Using the steam generator of Daya Bay nuclear power plant as prototype, a one-dimensional dynamic mathematical model of nuclear-powered steam generator is built addressing the primary side fluid, the secondary side fluid and the inner and outer walls of the u-tubes based on distributed parameter method and reasonable assumptions. A dynamic simulation program is developed based on MATLAB using Runge–Kutta method and dynamic heat transfer performance simulation of steam generator is conducted under varying power. The calculation results show that the outlet temperature of primary side, the vapor saturation temperature and the mass fraction of secondary side agree with actual operating data of Daya Bay Nuclear Power Plant. Outer wall temperature at interface between parallel flow preheating-section and boiling-section is the highest. It provides a theoretical basis for the analysis of steam generator actual operating condition to build a one-dimensional mathematical model of steam generator based on the distributed parameter method and apply in simulation successfully.