The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland

This paper describes the Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme and its implementation on the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model at the University of Maryland. Numerical results are shown for both simulated observations and observations of the real atmosphere. The role of flow-dependent information in data assimilation is discussed based on the results of the numerical experiments. Preliminary assimilation results with AMSU-A radiance observations are also presented.

[1]  Istvan Szunyogh,et al.  Mechanisms for the Development of Locally Low-Dimensional Atmospheric Dynamics , 2005 .

[2]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[3]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[4]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[5]  Andrew F. Loughe,et al.  The Relationship between Ensemble Spread and Ensemble Mean Skill , 1998 .

[6]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[7]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[8]  P. L. Houtekamer,et al.  Global and Local Skill Forecasts , 1993 .

[9]  Peter Lynch,et al.  Initialization of the HIRLAM Model Using a Digital Filter , 1992 .

[10]  J. Yorke,et al.  Four-dimensional ensemble Kalman filtering , 2004 .

[11]  Istvan Szunyogh,et al.  A local ensemble transform Kalman filter data assimilation system for the NCEP global model , 2008 .

[12]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[13]  Timothy W. Barker,et al.  The Relationship between Spread and Forecast Error in Extended-range Forecasts , 1991 .

[14]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[15]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[16]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[17]  Yoshiaki Sato,et al.  Assimilating Satellite Radiances with a Local Ensemble Transform Kalman Filter (LETKF) Applied to the JMA Global Model (GSM) , 2007 .

[18]  Hong Li,et al.  Observation bias correction with an ensemble Kalman filter , 2009 .

[19]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[20]  Thomas M. Hamill,et al.  Ensemble Data Assimilation with the NCEP Global Forecast System , 2008 .

[21]  Istvan Szunyogh,et al.  Assessing Predictability with a Local Ensemble Kalman Filter , 2007 .

[22]  Xue Wei,et al.  Reanalysis without Radiosondes Using Ensemble Data Assimilation , 2004 .

[23]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[24]  Istvan Szunyogh,et al.  Local ensemble Kalman filtering in the presence of model bias , 2006 .

[25]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.