BSMBench: A flexible and scalable HPC benchmark from beyond the standard model physics

Lattice Quantum ChromoDynamics (QCD), and by extension its parent field, Lattice Gauge Theory (LGT), make up a significant fraction of supercomputing cycles worldwide. As such, it would be irresponsible not to evaluate machines' suitability for such applications. To this end, a benchmark has been developed to assess the performance of LGT applications on modern HPC platforms. Distinct from previous QCD-based benchmarks, this allows probing the behaviour of a variety of theories, which allows varying the ratio of demands between on-node computations and inter-node communications. The results of testing this benchmark on various recent HPC platforms are presented, and directions for future development are discussed.

[1]  [Authors]. , 2018, Praxis der Kinderpsychologie und Kinderpsychiatrie.

[2]  Jack Dongarra,et al.  A new metric for ranking high-performance computing systems , 2016, National Science Review.

[3]  J. Giedt Anomalous dimensions on the lattice , 2015, 1512.09330.

[4]  L. Debbio IR fixed points in lattice field theories , 2014 .

[5]  Francesco Sannino,et al.  Orthogonal Technicolor with Isotriplet Dark Matter on the Lattice , 2012, 1211.5021.

[6]  B. Lucini,et al.  Topology of Minimal Walking Technicolor , 2012, 1209.5579.

[7]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[8]  L. Debbio,et al.  Monte Carlo renormalization group minimal walking technicolor , 2012 .

[9]  Francesco Sannino,et al.  Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors , 2011, 1109.3513.

[10]  L. Debbio,et al.  Improved lattice spectroscopy of minimal walking technicolor , 2011, 1104.4301.

[11]  S. Schaefer Algorithms for lattice QCD: progress and challenges , 2010, 1011.5641.

[12]  L. Debbio,et al.  MCRG Minimal Walking Technicolor , 2010, 1010.5909.

[13]  G. Moraitis,et al.  Orientifold Planar Equivalence: The Quenched Meson Spectrum , 2010, 1010.6053.

[14]  L. Debbio,et al.  Infrared dynamics of minimal walking technicolor , 2010, 1004.3206.

[15]  L. Debbio,et al.  Mesonic spectroscopy of Minimal Walking Technicolor , 2010, 1004.3197.

[16]  L. Debbio,et al.  Conformal versus confining scenario in SU(2) with adjoint fermions , 2009, 0907.3896.

[17]  L. Debbio,et al.  Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions , 2008, 0805.2058.

[18]  Jan Smit,et al.  Introduction to Quantum Fields on a Lattice , 2002 .

[19]  Martin Lüscher,et al.  Lattice QCD on PCs , 2001 .

[20]  Jack Dongarra,et al.  Top500 Supercomputer Sites , 1997 .

[21]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[22]  H. J. Rothe Lattice Gauge Theories: An Introduction , 1992 .

[23]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[24]  A. Zee,et al.  Quantum Field Theory in a Nutshell , 2003 .

[25]  H. Georgi Lie Algebras in Particle Physics: From Isospin to Unified Theories , 1994 .

[26]  H. Jones,et al.  Groups, representations, and physics , 1990 .