Ignorance is bliss: A complexity perspective on adapting reactive architectures

We study the computational complexity of adapting a reactive architecture to meet task constraints. This computational problem has application in a wide variety of fields, including cognitive and evolutionary robotics and cognitive neuroscience. We show that—even for a rather simple world and a simple task—adapting a reactive architecture to perform a given task in the given world is NP-hard. This result implies that adapting reactive architectures is computationally intractable regardless the nature of the adaptation process (e.g., engineering, development, evolution, learning, etc.) unless very special conditions apply. In order to find such special conditions for tractability, we have performed parameterized complexity analyses. One of our main findings is that architectures with limited sensory and perceptual abilities are efficiently adaptable.

[1]  Bart Selman,et al.  Near-Optimal Plans, Tractability, and Reactivity , 1994, KR.

[2]  Jonathan H. Connell,et al.  SSS: a hybrid architecture applied to robot navigation , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[3]  Zhou Fang,et al.  Evolving minimalistic control for complex behavior , 2010 .

[4]  Damian M. Lyons,et al.  Planning as incremental adaptation of a reactive system , 1995, Robotics Auton. Syst..

[5]  Iris van Rooij,et al.  A lazy brain? Embodied embedded cognition and cognitive neuroscience , 2008 .

[6]  L. Bax Cognitive control in reactive agents: Surviving predators through the evolution of a circadian rhythm , 2010 .

[7]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[8]  Iris van Rooij,et al.  The Tractable Cognition Thesis , 2008, Cogn. Sci..

[9]  L. Bax Cognitive Control in Reactive Agents: surviving predators through the evolution of a circadian rhythm , 2010 .

[10]  Julian Togelius,et al.  Evolution of a subsumption architecture neurocontroller , 2004, J. Intell. Fuzzy Syst..

[11]  Lance Fortnow,et al.  The status of the P versus NP problem , 2009, CACM.

[12]  Michael Wooldridge,et al.  The computational complexity of agent design problems , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[13]  Shigang Yue,et al.  Reactive direction control for a mobile robot: a locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated , 2010, Auton. Robots.

[14]  K. N. Dollman,et al.  - 1 , 1743 .

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Michael R. Fellows,et al.  Systematic parameterized complexity analysis in computational phonology , 1999 .

[17]  Patrik Haslum,et al.  Towards efficient universal planning: A randomized approach , 2000, Artif. Intell..

[18]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[19]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[20]  Rodney A. Brooks,et al.  A robot that walks; emergent behaviors from a carefully evolved network , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[21]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[22]  Iain A. Stewart,et al.  The complexity of achievement and maintenance problems in agent-based systems , 2003, Artif. Intell..

[23]  Jan Arne Telle,et al.  An Overview of Techniques for Designing Parameterized Algorithms , 2008, Comput. J..

[24]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[25]  David Kortenkamp,et al.  Issues on building software for hardware agents , 1995, The Knowledge Engineering Review.

[26]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[27]  Marco Cesati,et al.  Compendium of Parameterized Problems , 2006 .

[28]  Rodney A. Brooks,et al.  A Robot that Walks; Emergent Behaviors from a Carefully Evolved Network , 1989, Neural Computation.

[29]  Ida G. Sprinkhuizen-Kuyper,et al.  An intermediate form of behavioral control in 'reactive' robots , 2010 .

[30]  Kazuhito Yokoi,et al.  Online replanning for reactive robot motion: Practical aspects , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[32]  P. A. van der Helm Dynamics of Gestalt psychology (invited review of Perceptual Dynamics: Theoretical foundations and philosophical implications of Gestalt psychology by F. Sundqvist) , 2006 .

[33]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[34]  Michael Wooldridge,et al.  The complexity of agent design problems: Determinism and history dependence , 2005, Annals of Mathematics and Artificial Intelligence.