Spectral accuracy in fast Ewald-based methods for particle simulations

A spectrally accurate fast method for electrostatic calculations under periodic boundary conditions is presented. We follow the established framework of FFT-based Ewald summation, but obtain a method with an important decoupling of errors: it is shown, for the proposed method, that the error due to frequency domain truncation can be separated from the approximation error added by the fast method. This has the significance that the truncation of the underlying Ewald sum prescribes the size of the grid used in the FFT-based fast method, which clearly is the minimal grid. Both errors are of exponential-squared order, and the latter can be controlled independently of the grid size. We compare numerically to the established SPME method by Essmann et al. and see that the memory required can be reduced by orders of magnitude. We also benchmark efficiency (i.e. error as a function of computing time) against the SPME method, which indicates that our method is competitive. Analytical error estimates are proven and used to select parameters with a great degree of reliability and ease.

[1]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[2]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[3]  P. Koehl Electrostatics calculations: latest methodological advances. , 2006, Current opinion in structural biology.

[4]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[5]  Robert D. Skeel,et al.  Multiple grid methods for classical molecular dynamics , 2002, J. Comput. Chem..

[6]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[7]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[8]  J. Strain Fast potential theory. II: Layer potentials and discrete sums , 1992 .

[9]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[10]  Franz Franchetti,et al.  How to Write Fast Numerical Code: A Small Introduction , 2007, GTTSE.

[11]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[12]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[13]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[14]  R. Dror,et al.  Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. , 2005, The Journal of chemical physics.

[15]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[16]  Anna-Karin Tornberg,et al.  Spectrally accurate fast summation for periodic Stokes potentials , 2010, J. Comput. Phys..

[17]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[18]  M. Deserno,et al.  HOW TO MESH UP EWALD SUMS. II. AN ACCURATE ERROR ESTIMATE FOR THE PARTICLE-PARTICLE-PARTICLE-MESH ALGORITHM , 1998, cond-mat/9807100.

[19]  Eric F Darve,et al.  A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers , 2005 .

[20]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[21]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[22]  J. Perram,et al.  Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems , 1992 .

[23]  Hiroki Takemoto,et al.  Direct Sum of Coulomb Potential without Ambiguities of Conditionally Convergent Series , 2003 .

[24]  Guido Germano,et al.  Efficiency of linked cell algorithms , 2010, Comput. Phys. Commun..

[25]  R. Kress Numerical Analysis , 1998 .

[26]  John Strain,et al.  A geometric nonuniform fast Fourier transform , 2009, J. Comput. Phys..

[27]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[28]  Ilpo Vattulainen,et al.  Long-range interactions and parallel scalability in molecular simulations , 2007, Comput. Phys. Commun..

[29]  David S Cerutti,et al.  Multi-Level Ewald: A hybrid multigrid / Fast Fourier Transform approach to the electrostatic particle-mesh problem. , 2010, Journal of chemical theory and computation.

[30]  Thierry Matthey,et al.  MDSIMAID: Automatic parameter optimization in fast electrostatic algorithms , 2005, J. Comput. Chem..

[31]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[32]  C. Sagui,et al.  Multigrid methods for classical molecular dynamics simulations of biomolecules , 2001 .

[33]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[34]  Terry P Lybrand,et al.  Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility. , 2009, Journal of chemical theory and computation.

[35]  I. Tsukerman Efficient computation of long-range electromagnetic interactions without Fourier transforms , 2004, IEEE Transactions on Magnetics.