Fixed-Parameter Tractability of Satisfying beyond the Number of Variables

We consider a CNF formula F as a multiset of clauses: F={c1,…, cm}. The set of variables of F will be denoted by V(F). Let BF denote the bipartite graph with partite sets V(F) and F and an edge between v∈V(F) and c∈F if v∈c or $\bar{v} \in c$. The matching number ν(F) of F is the size of a maximum matching in BF. In our main result, we prove that the following parameterization of MaxSat is fixed-parameter tractable: Given a formula F, decide whether we can satisfy at least ν(F)+k clauses in F, where k is the parameter. A formula F is called variable-matched if ν(F)=|V(F)|. Let δ(F)=|F|−|V(F)| and δ*(F)= max F′⊆Fδ(F′). Our main result implies fixed-parameter tractability of MaxSat parameterized by δ(F) for variable-matched formulas F; this complements related results of Kullmann (2000) and Szeider (2004) for MaxSat parameterized by δ*(F). To prove our main result, we obtain an O((2e)2kkO(logk) (m+n)O(1))-time algorithm for the following parameterization of the Hitting Set problem: given a collection $\cal C$ of m subsets of a ground set U of n elements, decide whether there is X⊆U such that C∩X≠∅ for each $C\in \cal C$ and |X|≤m−k, where k is the parameter. This improves an algorithm that follows from a kernelization result of Gutin, Jones and Yeo (2011).

[1]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[2]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[3]  Gregory Gutin,et al.  A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Applications , 2011, Algorithmica.

[4]  Hans Kleine Büning,et al.  On subclasses of minimal unsatisfiable formulas , 2000, Discret. Appl. Math..

[5]  Christos H. Papadimitriou,et al.  The Complexity of Facets Resolved , 1988, J. Comput. Syst. Sci..

[6]  Hans Kleine Büning,et al.  Minimal Unsatisfiability and Autarkies , 2009, Handbook of Satisfiability.

[7]  Stefan Szeider,et al.  Citation for Published Item: Use Policy Minimal Unsatisfiable Formulas with Bounded Clause-variable Difference Are Fixed-parameter Tractable , 2022 .

[8]  Aravind Srinivasan,et al.  Improved approximations of packing and covering problems , 1995, STOC '95.

[9]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[10]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[11]  Meena Mahajan,et al.  Parameterizing above or below guaranteed values , 2009, J. Comput. Syst. Sci..

[12]  Gregory Gutin,et al.  A New Bound for 3-Satisfiable Maxsat and Its Algorithmic Application , 2011, FCT.

[13]  Noga Alon,et al.  Solving MAX-r-SAT Above a Tight Lower Bound , 2010, SODA '10.

[14]  T. C. Hu,et al.  Combinatorial algorithms , 1982 .

[15]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[16]  Fedor V. Fomin,et al.  Faster algorithms for finding and counting subgraphs , 2009, J. Comput. Syst. Sci..

[17]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[18]  Stefan Szeider,et al.  Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference , 2002, Theor. Comput. Sci..

[19]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[20]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[21]  Oliver Kullmann,et al.  An application of matroid theory to the SAT problem , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[22]  Noga Alon,et al.  Color-coding , 1995, JACM.

[23]  A. Nijenhuis Combinatorial algorithms , 1975 .

[24]  Gregory Gutin,et al.  Kernels for below-upper-bound parameterizations of the hitting set and directed dominating set problems , 2010, Theor. Comput. Sci..

[25]  Oliver Kullmann,et al.  Lean clause-sets: generalizations of minimally unsatisfiable clause-sets , 2003, Discret. Appl. Math..

[26]  Nathan Linial,et al.  Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas , 1986, J. Comb. Theory, Ser. A.

[27]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[28]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.