Degree conditions for restricted-edge-connectivity and isoperimetric-edge-connectivity to be optimal

[1]  G. Chartrand A Graph-Theoretic Approach to a Communications Problem , 1966 .

[2]  Linda .LESNIAK Results on the edge-connectivity of graphs , 1974, Discret. Math..

[3]  Donald L. Goldsmith,et al.  On graphs with equal edge-connectivity and minimum degree , 1978, Discret. Math..

[4]  Béla Bollobás,et al.  On graphs with equal edge connectivity and minimum degree , 1979, Discret. Math..

[5]  S. Louis Hakimi,et al.  On Computing a Conditional Edge-Connectivity of a Graph , 1988, Inf. Process. Lett..

[6]  Abdol-Hossein Esfahanian,et al.  Generalized Measures of Fault Tolerance with Application to N-Cube Networks , 1989, IEEE Trans. Computers.

[7]  Lutz Volkmann,et al.  Degree sequence conditions for maximally edge-connected graphs and digraphs , 1997, J. Graph Theory.

[8]  Yahya Ould Hamidoune,et al.  On Isoperimetric Connectivity in Vertex-Transitive Graphs , 2000, SIAM J. Discret. Math..

[9]  Wang Ying An Ore Type Sufficient Condition for a Graph to Be Super Restricted Edge-Connected , 2001 .

[10]  Lutz Volkmann,et al.  Edge-cuts leaving components of order at least three , 2002, Discret. Math..

[11]  Jixiang Meng,et al.  On a kind of restricted edge connectivity of graphs , 2002, Discret. Appl. Math..

[12]  Qiao Li,et al.  Conditional edge connectivity properties, reliability comparisons and transitivity of graphs , 2002, Discret. Math..

[13]  Lutz Volkmann,et al.  Restricted edge-connectivity and minimum edge-degree , 2003, Ars Comb..

[14]  Jixiang Meng Optimally super-edge-connected transitive graphs , 2003, Discret. Math..

[15]  Zhao Zhang,et al.  A proof of an inequality concerning k-restricted edge connectivity , 2005, Discret. Math..

[16]  G. Winskel What Is Discrete Mathematics , 2007 .