SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase

We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 × 1042 erg s−1 and duration ∼90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(56Ni) = 0.040 ± 0.015 M⊙ from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M⊙, an initial progenitor radius of 1.6 × 1013 cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M⊙ was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators.

[1]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[2]  Philip Massey,et al.  The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. I. Results from 19 OB Associations in the Magellanic Clouds , 2000 .

[3]  I. Hook,et al.  Supernovae and cosmology with future European facilities , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  N. Panagia,et al.  The progenitor of SN1987A , 1987, Nature.

[5]  N. Suntzeff,et al.  SN 1987A in the LMC. II. Optical Photometry at Cerro Tololo , 1988 .

[6]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[7]  S. Deustua,et al.  PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE , 2012, 1205.3494.

[8]  M. Turatto,et al.  Peculiar, low-luminosity Type II supernovae: low-energy explosions in massive progenitors? , 2002, astro-ph/0210171.

[9]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[10]  P. Massey,et al.  The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. II. Results from 12 Galactic Clusters and OB Associations , 2001 .

[11]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[12]  T. N. Sokolova,et al.  The bright Type IIP SN 2009bw, showing signs of interaction , 2012, 1202.0659.

[13]  L. Lucy,et al.  The Bolometric Light Curve of SN 1978A: Results From Day 616 to 1316 After Outburst , 1991 .

[14]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[15]  The Distance to SN 1999em from the Expanding Photosphere Method , 2001, astro-ph/0105006.

[16]  C. Kowal ABSOLUTE MAGNITUDES OF SUPERNOVAE. , 1968 .

[17]  R. Kirshner,et al.  Ultraviolet Observations of SN 1987A , 1987 .

[18]  K. Maguire,et al.  The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling , 2012, 1208.2183.

[19]  A. Fu,et al.  The late behavior of supernova 1987A. I - The light curve. II - Gamma-ray transparency of the ejecta , 1989 .

[20]  L. D. J. Hillier Distance determinations using Type II supernovae and the expanding photosphere method , 2005, astro-ph/0505465.

[21]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[22]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[23]  D. Poznanski,et al.  TYPE II-P SUPERNOVAE AS STANDARD CANDLES: THE SDSS-II SAMPLE REVISITED , 2010, 1008.0877.

[24]  M. L. Pumo,et al.  Comparison of progenitor mass estimates for the type IIP SN 2012A , 2013, 1305.5789.

[25]  I. J. Danziger,et al.  Light curves and H α luminosities as indicators of 56 Ni mass in type IIP supernovae , 2003 .

[26]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[27]  Physics,et al.  SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova , 2011, 1106.3030.

[28]  J. Eldridge,et al.  Circumstellar dust as a solution to the red supergiant supernova progenitor problem , 2011, 1109.4637.

[29]  Low‐luminosity Type II supernovae: spectroscopic and photometric evolution , 2003, astro-ph/0309264.

[30]  K. Nomoto,et al.  Radiation Hydrodynamics of SN 1987A. I. Global Analysis of the Light Curve for the First 4 Months , 1999, astro-ph/9911205.

[31]  V. S. Imshennik,et al.  On the theory of the light curves of supernovae , 1971 .

[32]  M. L. Pumo,et al.  The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase , 2011, 1102.5468.

[33]  Australian National University,et al.  Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors , 2014, 1401.5426.

[34]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[35]  Moscow,et al.  Ejecta and progenitor of the low-luminosity type IIP supernova 2003Z , 2007, 0710.1409.

[36]  Chris L. Fryer,et al.  THE LONG-LIVED UV “PLATEAU” OF SN 2012aw , 2012, 1210.5496.

[37]  R. Foley,et al.  Photometric and spectroscopic properties of Type II-P supernovae , 2014, 1404.0378.

[38]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[39]  J. Prochaska,et al.  An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.

[40]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[41]  M. Turatto,et al.  Variety in Supernovae , 2002 .

[42]  An optimal hydrodynamic model for the normal type IIP supernova 1999em , 2006, astro-ph/0609642.

[43]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[44]  S. Smartt,et al.  Supernova 2012ec: Identification of the progenitor and early monitoring with PESSTO , 2013, 1302.0170.

[45]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[46]  G. Tammann,et al.  The luminosity of supernovae of type Ia from tip of the red-giant branch distances and the value of H0 , 2012, 1208.5054.

[47]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[48]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[49]  Peter Nugent,et al.  Detailed Spectroscopic Analysis of SN 1987A: The Distance to the Large Magellanic Cloud Using the Spectral-fitting Expanding Atmosphere Method , 2002 .

[50]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[51]  Robert P. Kirshner,et al.  THE STANDARDIZED CANDLE METHOD FOR TYPE II PLATEAU SUPERNOVAE , 2010, 1004.2534.

[52]  U. Munari,et al.  THE TYPE IIP SUPERNOVA 2012aw IN M95: HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING , 2014, 1404.1294.

[53]  R. Kotak,et al.  The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines , 2013, 1311.2031.

[54]  Adam A. Miller,et al.  IMPROVED STANDARDIZATION OF TYPE II-P SUPERNOVAE: APPLICATION TO AN EXPANDED SAMPLE , 2008, 0810.4923.

[55]  H. Courtois,et al.  THE EXTRAGALACTIC DISTANCE DATABASE , 2009, 0902.3668.

[56]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[57]  D. Nadyozhin,et al.  Hydrodynamical models of type II supernovae , 1982 .

[58]  Moscow,et al.  High mass of the type IIP supernova 2004et inferred from hydrodynamic modeling , 2009, 0908.2403.

[59]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[60]  I. Iben,et al.  Asymptotic Giant Branch Evolution and Beyond , 1983 .

[61]  Moscow,et al.  Progenitor mass of the type IIp supernova 2005cs , 2008, 0809.3766.

[62]  Edward J. Shaya,et al.  Tip of the Red Giant Branch Distances. II. Zero-Point Calibration , 2007, astro-ph/0701518.

[63]  Center for Cosmology,et al.  ON ABSORPTION BY CIRCUMSTELLAR DUST, WITH THE PROGENITOR OF SN 2012aw AS A CASE STUDY , 2012, 1208.4111.

[64]  Light curves and H$\alpha$ luminosities as indicators of $\mathsf{^{56}}$Ni mass in type IIP supernovae , 2003, astro-ph/0304144.

[65]  K. Maguire,et al.  Supersolar Ni/Fe production in the Type IIP SN 2012ec , 2014, 1410.8394.

[66]  B. Kumar,et al.  Supernova 2012aw - a high-energy clone of archetypal type IIP SN 1999em , 2013, 1305.3152.

[67]  V. Ripepi,et al.  Distance to Galactic globulars using the near‐infrared magnitudes of RR Lyrae stars – IV. The case of M5 (NGC 5904) , 2011, 1105.4031.

[68]  M. L. Pumo,et al.  SN 2009E: a faint clone of SN 1987A , 2011, 1111.2497.

[69]  Robert M. Quimby,et al.  SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova , 2007, 0705.3478.

[70]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[71]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[72]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.

[73]  R. Ellis,et al.  Toward a Cosmological Hubble Diagram for Type II-P Supernovae , 2005, astro-ph/0603535.

[74]  L. Zampieri,et al.  RADIATION-HYDRODYNAMICAL MODELING OF CORE-COLLAPSE SUPERNOVAE: LIGHT CURVES AND THE EVOLUTION OF PHOTOSPHERIC VELOCITY AND TEMPERATURE , 2011, 1108.0688.

[75]  S. E. Woosley,et al.  TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.

[76]  D. Poznanski An emerging coherent picture of red supergiant supernova explosions , 2013, 1304.4967.

[77]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[78]  Nicholas B. Suntzeff,et al.  The distances to five Type II supernovae using the expanding photosphere method, and the value of H(sub 0) , 1994 .

[79]  S. Smartt,et al.  SN 1999ga: a low-luminosity linear type II supernova? , 2009, 0904.0637.

[80]  Spitzer Science Center,et al.  Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.

[81]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[82]  S. Smartt,et al.  SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared , 2009, 0901.2075.

[83]  Adam G. Riess,et al.  TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD , 2009, 0910.5597.

[84]  Robert P. Kirshner,et al.  Distances to extragalactic supernovae , 1974 .

[85]  S. Shapiro,et al.  Will a Black Hole Soon Emerge from SN 1997D? , 1998, astro-ph/9806300.

[86]  Brian Paul Schmidt,et al.  The atmospheres of type II supernovae and the expanding photosphere method , 1996 .

[87]  M. Turatto,et al.  Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .

[88]  R. Kotak,et al.  RED AND DEAD: THE PROGENITOR OF SN 2012aw IN M95 , 2012, 1204.1523.

[89]  D. Poznanski,et al.  THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95 , 2012, 1207.2811.

[90]  D. Andrew Peer Reviewed Title: Towards a Cosmological Hubble Diagram for Type II-P Supernovae , 2006 .

[91]  W. M. Wood-Vasey,et al.  SUPERNOVA 2009kf: AN ULTRAVIOLET BRIGHT TYPE IIP SUPERNOVA DISCOVERED WITH PAN-STARRS 1 AND GALEX , 2010, 1001.5427.

[92]  R. Kirshner,et al.  Peculiar Type II Supernovae from Blue Supergiants , 2011, 1101.1298.