The complete genome of the crenarchaeon Sulfolobus solfataricus P2

The genome of the crenarchaeon Sulfolobus solfataricus P2 contains 2,992,245 bp on a single chromosome and encodes 2,977 proteins and many RNAs. One-third of the encoded proteins have no detectable homologs in other sequenced genomes. Moreover, 40% appear to be archaeal-specific, and only 12% and 2.3% are shared exclusively with bacteria and eukarya, respectively. The genome shows a high level of plasticity with 200 diverse insertion sequence elements, many putative nonautonomous mobile elements, and evidence of integrase-mediated insertion events. There are also long clusters of regularly spaced tandem repeats. Different transfer systems are used for the uptake of inorganic and organic solutes, and a wealth of intracellular and extracellular proteases, sugar, and sulfur metabolizing enzymes are encoded, as well as enzymes of the central metabolic pathways and motility proteins. The major metabolic electron carrier is not NADH as in bacteria and eukarya but probably ferredoxin. The essential components required for DNA replication, DNA repair and recombination, the cell cycle, transcriptional initiation and translation, but not DNA folding, show a strong eukaryal character with many archaeal-specific features. The results illustrate major differences between crenarchaea and euryarchaea, especially for their DNA replication mechanism and cell cycle processes and their translational apparatus.

[1]  S. Miyachi,et al.  New Developments in Marine Biotechnology , 2003, Marine Biotechnology.

[2]  S. Bell,et al.  Mechanism and regulation of transcription in archaea. , 2001, Current opinion in microbiology.

[3]  A. Driessen,et al.  Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein‐dependent ABC transporters , 2001, Molecular microbiology.

[4]  M. F. White,et al.  Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. , 2001, Nucleic acids research.

[5]  R. Garrett,et al.  Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus. , 2001, Journal of molecular biology.

[6]  R. Garrett,et al.  Genome evolution: Gene capture in archaeal chromosomes , 2001, Nature.

[7]  R. Garrett,et al.  pING Family of Conjugative Plasmids from the Extremely Thermophilic Archaeon Sulfolobus islandicus: Insights into Recombination and Conjugation in Crenarchaeota , 2000, Journal of bacteriology.

[8]  R. Hedderich,et al.  Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH–ubiquinone oxidoreductase (Complex I) , 2000, FEBS letters.

[9]  P. Graumann Bacillus subtilis SMC Is Required for Proper Arrangement of the Chromosome and for Efficient Segregation of Replication Termini but Not for Bipolar Movement of Newly Duplicated Origin Regions , 2000, Journal of bacteriology.

[10]  R A Garrett,et al.  Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. , 2000, Journal of molecular biology.

[11]  V. Thorsson,et al.  Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Dmitrij Frishman,et al.  The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.

[13]  G. Almouzni,et al.  CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. , 2000, Journal of cell science.

[14]  H Philippe,et al.  Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. , 2000, Science.

[15]  A. Bürkle Poly(ADP‐Ribosyl)ation, Genomic Instability, and Longevity , 2000, Annals of the New York Academy of Sciences.

[16]  C. Sensen,et al.  Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus , 2000, Extremophiles.

[17]  C. Sensen,et al.  High Spontaneous Mutation Rate in the Hyperthermophilic Archaeon Sulfolobus solfataricus Is Mediated by Transposable Elements , 2000, Journal of bacteriology.

[18]  W. Hausner,et al.  Transcription Factor S, a Cleavage Induction Factor of the Archaeal RNA Polymerase* , 2000, The Journal of Biological Chemistry.

[19]  S. Eddy,et al.  Homologs of small nucleolar RNAs in Archaea. , 2000, Science.

[20]  B. Tye Insights into DNA replication from the third domain of life. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Bird,et al.  Histone deacetylases: silencers for hire. , 2000, Trends in biochemical sciences.

[22]  Kevin Struhl,et al.  TATA-Binding Protein Mutants That Increase Transcription from Enhancerless and Repressed Promoters In Vivo , 2000, Molecular and Cellular Biology.

[23]  C. Sensen,et al.  Gene content and organization of a 281-kbp contig from the genome of the extremely thermophilic archaeon, Sulfolobus solfataricus P2. , 2000, Genome.

[24]  R. Garrett,et al.  A Bac Library and Paired-PCR Approach to Mapping and Completing the Genome Sequence of Sulfolobus Solfataricus P2 , 2000, DNA sequence : the journal of DNA sequencing and mapping.

[25]  M. Saraste,et al.  FEBS Lett , 2000 .

[26]  E. Koonin,et al.  DNA-binding proteins and evolution of transcription regulation in the archaea. , 1999, Nucleic acids research.

[27]  B. Friedrich,et al.  Purification and characterization of the single‐component nitric oxide reductase from Ralstonia eutropha H16 , 1999, FEBS letters.

[28]  R. Bernander,et al.  Changes in Cell Size and DNA Content inSulfolobus Cultures during Dilution and Temperature Shift Experiments , 1999, Journal of bacteriology.

[29]  J. Wagner,et al.  The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. , 1999, Molecular cell.

[30]  C. Ouzounis,et al.  Transcription in archaea. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Reeve,et al.  Methanobacterium thermoautotrophicum RNA Polymerase and Transcription In Vitro , 1999, Journal of bacteriology.

[32]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[33]  K. Sowers,et al.  Gene transfer systems for the Archaea. , 1999, Trends in microbiology.

[34]  S. Knapp,et al.  Identification of the gene encoding archeal‐specific DNA‐binding proteins of the Sac10b family , 1999, Molecular microbiology.

[35]  A. Driessen,et al.  A unique short signal sequence in membrane‐anchored proteins of Archaea , 1999, Molecular microbiology.

[36]  C. Sensen,et al.  An Lrp-Like Protein of the Hyperthermophilic Archaeon Sulfolobus solfataricus Which Binds to Its Own Promoter , 1999, Journal of bacteriology.

[37]  Y. Kawarabayasi,et al.  Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[38]  R. L. Charlebois Organization of the Prokaryotic Genome , 1999 .

[39]  H. Halvorson,et al.  New Developments in Marine Biotechnology , 2010, Springer US.

[40]  M. Beltrame,et al.  Flexing DNA: HMG-box proteins and their partners. , 1998, American journal of human genetics.

[41]  R. Quatrano Genomics , 1998, Plant Cell.

[42]  M. Finel Does NADH play a central role in energy metabolism in Helicobacter pylori? , 1998, Trends in biochemical sciences.

[43]  R. Garrett,et al.  Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon , 1998, Extremophiles.

[44]  C. Sensen,et al.  Sulfolobus genome: from genomics to biology. , 1998, Current opinion in microbiology.

[45]  R. Garrett,et al.  Genetic elements in the extremely thermophilic archaeon Sulfolobus , 1998, Extremophiles.

[46]  Li Huang,et al.  Small Abundant DNA Binding Proteins from the Thermoacidophilic Archaeon Sulfolobus shibatae Constrain Negative DNA Supercoils , 1998, Journal of bacteriology.

[47]  Joel P. Brockman,et al.  RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. , 1998, Genes & development.

[48]  S. Edmondson,et al.  The hyperthermophile chromosomal protein Sac7d sharply kinks DNA , 1998, Nature.

[49]  T. Gaasterland,et al.  Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. , 1998, Microbial & comparative genomics.

[50]  T Gaasterland,et al.  Constructing multigenome views of whole microbial genomes. , 1998, Microbial & comparative genomics.

[51]  C. Sensen,et al.  Completing the sequence of the Sulfolobus solfataricus P2 genome , 1998, Extremophiles.

[52]  R. Garrett,et al.  Archaeal introns: splicing, intercellular mobility and evolution. , 1997, Trends in biochemical sciences.

[53]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[54]  C. Sensen,et al.  Evolutionary analysis of the hisCGABdFDEHI gene cluster from the archaeon Sulfolobus solfataricus P2 , 1997, Journal of bacteriology.

[55]  J. Reeve,et al.  Archaeal Histones, Nucleosomes, and Transcription Initiation , 1997, Cell.

[56]  H. Kagawa,et al.  Chaperonin filaments: the archaeal cytoskeleton? , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Nicolas,et al.  An atypical topoisomerase II from archaea with implications for meiotic recombination , 1997, Nature.

[58]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[59]  C. Jaxel,et al.  Reverse gyrase gene from Sulfolobus shibatae B12: gene structure, transcription unit and comparative sequence analysis of the two domains. , 1996, Nucleic acids research.

[60]  C. Sensen,et al.  An archaebacterial homolog of pelota, a meiotic cell division protein in eukaryotes. , 1996, FEMS microbiology letters.

[61]  J. F. Connaughton,et al.  Identification of a DinB/UmuC homolog in the archeon Sulfolobus solfataricus. , 1996, Mutation research.

[62]  C. Sensen,et al.  The Sulfolobus solfataricus P2 genome project , 1996, FEBS letters.

[63]  E. Ciccotti,et al.  Micronucleus test in erythrocytes of Barbus plebejus (Teleostei, Pisces) from two natural environments: a bioassay for the in situ detection of mutagens in freshwater. , 1996, Mutation research.

[64]  T Gaasterland,et al.  Fully automated genome analysis that reflects user needs and preferences. A detailed introduction to the MAGPIE system architecture. , 1996, Biochimie.

[65]  J. G. McAfee,et al.  Gene cloning, expression, and characterization of the Sac7 proteins from the hyperthermophile Sulfolobus acidocaldarius. , 1995, Biochemistry.

[66]  M. Saraste,et al.  New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. , 1995, Journal of molecular biology.

[67]  P. Thuriaux,et al.  Transcription in archaea: similarity to that in eucarya. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. Lübben,et al.  Cytochromes of archaeal electron transfer chains. , 1995, Biochimica et biophysica acta.

[69]  T. Schäfer,et al.  Metabolism of hyperthermophiles , 1995, World journal of microbiology & biotechnology.

[70]  P. Forterre,et al.  Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. , 1994, Journal of Biological Chemistry.

[71]  P. Forterre,et al.  Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[72]  H. Klenk,et al.  Structure and Function of the DNA-Dependent RNA Polymerase of Sulfolobus , 1993 .

[73]  F. Hartl,et al.  A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1 , 1991, Nature.

[74]  A. Matin Keeping a neutral cytoplasm; the bioenergetics of obligate acidophiles , 1990 .

[75]  D. Grogan,et al.  Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains , 1989, Journal of bacteriology.

[76]  R A Garrett,et al.  Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[77]  G. Schäfer,et al.  Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius , 1988 .

[78]  T. Oshima,et al.  Purification and properties of NADH dehydrogenase from a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. , 1987, Journal of biochemistry.