The complete genome of the crenarchaeon Sulfolobus solfataricus P2
暂无分享,去创建一个
Mark A. Ragan | Xu Peng | Terry Gaasterland | Christoph W. Sensen | Paul M. K. Gordon | Robert L. Charlebois | W. Ford Doolittle | Roger A. Garrett | Niels Tolstrup | Peter Redder | Fabrice Confalonieri | Michel Duguet | C. Sensen | W. Doolittle | N. Tolstrup | R. Garrett | I. G. Clausen | T. Gaasterland | M. Ragan | R. L. Charlebois | P. Gordon | Xu Peng | P. Redder | Mariana J. Awayez | Q. She | J. van der Oost | R. Singh | F. Confalonieri | Y. Zivanovic | Ghislaine Allard | C. Chan-Weiher | B. Curtis | Anick De Moors | G. Erauso | Cynthia Fletcher | I. Heikamp-de Jong | A. Jeffries | C. Kozera | N. Medina | H. P. Thi-Ngoc | M. E. Schenk | Cynthia Theriault | M. Duguet | Qunxin She | Ghislaine Allard | Ib Groth Clausen | Alex C. Jeffries | Yvan Zivanovic | Rama K. Singh | Christina C.-Y. Chan-Weiher | Bruce A. Curtis | Anick De Moors | Gael Erauso | Cynthia Fletcher | Ineke Heikamp-de Jong | Catherine J. Kozera | Nadine Medina | Hoa Phan Thi-Ngoc | Margaret E. Schenk | Cynthia Theriault | John Van der Oost | X. Peng | Peter Redder | Ineke Heikamp-de Jong
[1] S. Miyachi,et al. New Developments in Marine Biotechnology , 2003, Marine Biotechnology.
[2] S. Bell,et al. Mechanism and regulation of transcription in archaea. , 2001, Current opinion in microbiology.
[3] A. Driessen,et al. Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein‐dependent ABC transporters , 2001, Molecular microbiology.
[4] M. F. White,et al. Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. , 2001, Nucleic acids research.
[5] R. Garrett,et al. Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus. , 2001, Journal of molecular biology.
[6] R. Garrett,et al. Genome evolution: Gene capture in archaeal chromosomes , 2001, Nature.
[7] R. Garrett,et al. pING Family of Conjugative Plasmids from the Extremely Thermophilic Archaeon Sulfolobus islandicus: Insights into Recombination and Conjugation in Crenarchaeota , 2000, Journal of bacteriology.
[8] R. Hedderich,et al. Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH–ubiquinone oxidoreductase (Complex I) , 2000, FEBS letters.
[9] P. Graumann. Bacillus subtilis SMC Is Required for Proper Arrangement of the Chromosome and for Efficient Segregation of Replication Termini but Not for Bipolar Movement of Newly Duplicated Origin Regions , 2000, Journal of bacteriology.
[10] R A Garrett,et al. Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. , 2000, Journal of molecular biology.
[11] V. Thorsson,et al. Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[12] Dmitrij Frishman,et al. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.
[13] G. Almouzni,et al. CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. , 2000, Journal of cell science.
[14] H Philippe,et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. , 2000, Science.
[15] A. Bürkle. Poly(ADP‐Ribosyl)ation, Genomic Instability, and Longevity , 2000, Annals of the New York Academy of Sciences.
[16] C. Sensen,et al. Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus , 2000, Extremophiles.
[17] C. Sensen,et al. High Spontaneous Mutation Rate in the Hyperthermophilic Archaeon Sulfolobus solfataricus Is Mediated by Transposable Elements , 2000, Journal of bacteriology.
[18] W. Hausner,et al. Transcription Factor S, a Cleavage Induction Factor of the Archaeal RNA Polymerase* , 2000, The Journal of Biological Chemistry.
[19] S. Eddy,et al. Homologs of small nucleolar RNAs in Archaea. , 2000, Science.
[20] B. Tye. Insights into DNA replication from the third domain of life. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[21] A. Bird,et al. Histone deacetylases: silencers for hire. , 2000, Trends in biochemical sciences.
[22] Kevin Struhl,et al. TATA-Binding Protein Mutants That Increase Transcription from Enhancerless and Repressed Promoters In Vivo , 2000, Molecular and Cellular Biology.
[23] C. Sensen,et al. Gene content and organization of a 281-kbp contig from the genome of the extremely thermophilic archaeon, Sulfolobus solfataricus P2. , 2000, Genome.
[24] R. Garrett,et al. A Bac Library and Paired-PCR Approach to Mapping and Completing the Genome Sequence of Sulfolobus Solfataricus P2 , 2000, DNA sequence : the journal of DNA sequencing and mapping.
[25] M. Saraste,et al. FEBS Lett , 2000 .
[26] E. Koonin,et al. DNA-binding proteins and evolution of transcription regulation in the archaea. , 1999, Nucleic acids research.
[27] B. Friedrich,et al. Purification and characterization of the single‐component nitric oxide reductase from Ralstonia eutropha H16 , 1999, FEBS letters.
[28] R. Bernander,et al. Changes in Cell Size and DNA Content inSulfolobus Cultures during Dilution and Temperature Shift Experiments , 1999, Journal of bacteriology.
[29] J. Wagner,et al. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. , 1999, Molecular cell.
[30] C. Ouzounis,et al. Transcription in archaea. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[31] J. Reeve,et al. Methanobacterium thermoautotrophicum RNA Polymerase and Transcription In Vitro , 1999, Journal of bacteriology.
[32] S. Salzberg,et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.
[33] K. Sowers,et al. Gene transfer systems for the Archaea. , 1999, Trends in microbiology.
[34] S. Knapp,et al. Identification of the gene encoding archeal‐specific DNA‐binding proteins of the Sac10b family , 1999, Molecular microbiology.
[35] A. Driessen,et al. A unique short signal sequence in membrane‐anchored proteins of Archaea , 1999, Molecular microbiology.
[36] C. Sensen,et al. An Lrp-Like Protein of the Hyperthermophilic Archaeon Sulfolobus solfataricus Which Binds to Its Own Promoter , 1999, Journal of bacteriology.
[37] Y. Kawarabayasi,et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.
[38] R. L. Charlebois. Organization of the Prokaryotic Genome , 1999 .
[39] H. Halvorson,et al. New Developments in Marine Biotechnology , 2010, Springer US.
[40] M. Beltrame,et al. Flexing DNA: HMG-box proteins and their partners. , 1998, American journal of human genetics.
[41] R. Quatrano. Genomics , 1998, Plant Cell.
[42] M. Finel. Does NADH play a central role in energy metabolism in Helicobacter pylori? , 1998, Trends in biochemical sciences.
[43] R. Garrett,et al. Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon , 1998, Extremophiles.
[44] C. Sensen,et al. Sulfolobus genome: from genomics to biology. , 1998, Current opinion in microbiology.
[45] R. Garrett,et al. Genetic elements in the extremely thermophilic archaeon Sulfolobus , 1998, Extremophiles.
[46] Li Huang,et al. Small Abundant DNA Binding Proteins from the Thermoacidophilic Archaeon Sulfolobus shibatae Constrain Negative DNA Supercoils , 1998, Journal of bacteriology.
[47] Joel P. Brockman,et al. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. , 1998, Genes & development.
[48] S. Edmondson,et al. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA , 1998, Nature.
[49] T. Gaasterland,et al. Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. , 1998, Microbial & comparative genomics.
[50] T Gaasterland,et al. Constructing multigenome views of whole microbial genomes. , 1998, Microbial & comparative genomics.
[51] C. Sensen,et al. Completing the sequence of the Sulfolobus solfataricus P2 genome , 1998, Extremophiles.
[52] R. Garrett,et al. Archaeal introns: splicing, intercellular mobility and evolution. , 1997, Trends in biochemical sciences.
[53] Thomas L. Madden,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.
[54] C. Sensen,et al. Evolutionary analysis of the hisCGABdFDEHI gene cluster from the archaeon Sulfolobus solfataricus P2 , 1997, Journal of bacteriology.
[55] J. Reeve,et al. Archaeal Histones, Nucleosomes, and Transcription Initiation , 1997, Cell.
[56] H. Kagawa,et al. Chaperonin filaments: the archaeal cytoskeleton? , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[57] A. Nicolas,et al. An atypical topoisomerase II from archaea with implications for meiotic recombination , 1997, Nature.
[58] S. Eddy,et al. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.
[59] C. Jaxel,et al. Reverse gyrase gene from Sulfolobus shibatae B12: gene structure, transcription unit and comparative sequence analysis of the two domains. , 1996, Nucleic acids research.
[60] C. Sensen,et al. An archaebacterial homolog of pelota, a meiotic cell division protein in eukaryotes. , 1996, FEMS microbiology letters.
[61] J. F. Connaughton,et al. Identification of a DinB/UmuC homolog in the archeon Sulfolobus solfataricus. , 1996, Mutation research.
[62] C. Sensen,et al. The Sulfolobus solfataricus P2 genome project , 1996, FEBS letters.
[63] E. Ciccotti,et al. Micronucleus test in erythrocytes of Barbus plebejus (Teleostei, Pisces) from two natural environments: a bioassay for the in situ detection of mutagens in freshwater. , 1996, Mutation research.
[64] T Gaasterland,et al. Fully automated genome analysis that reflects user needs and preferences. A detailed introduction to the MAGPIE system architecture. , 1996, Biochimie.
[65] J. G. McAfee,et al. Gene cloning, expression, and characterization of the Sac7 proteins from the hyperthermophile Sulfolobus acidocaldarius. , 1995, Biochemistry.
[66] M. Saraste,et al. New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. , 1995, Journal of molecular biology.
[67] P. Thuriaux,et al. Transcription in archaea: similarity to that in eucarya. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[68] M. Lübben,et al. Cytochromes of archaeal electron transfer chains. , 1995, Biochimica et biophysica acta.
[69] T. Schäfer,et al. Metabolism of hyperthermophiles , 1995, World journal of microbiology & biotechnology.
[70] P. Forterre,et al. Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. , 1994, Journal of Biological Chemistry.
[71] P. Forterre,et al. Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[72] H. Klenk,et al. Structure and Function of the DNA-Dependent RNA Polymerase of Sulfolobus , 1993 .
[73] F. Hartl,et al. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1 , 1991, Nature.
[74] A. Matin. Keeping a neutral cytoplasm; the bioenergetics of obligate acidophiles , 1990 .
[75] D. Grogan,et al. Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains , 1989, Journal of bacteriology.
[76] R A Garrett,et al. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. , 1989, Proceedings of the National Academy of Sciences of the United States of America.
[77] G. Schäfer,et al. Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius , 1988 .
[78] T. Oshima,et al. Purification and properties of NADH dehydrogenase from a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. , 1987, Journal of biochemistry.