Portfolio optimization with a prescribed terminal wealth distribution

This paper studies a portfolio allocation problem, where the goal is to prescribe the wealth distribution at the final time. We study this problem with the tools of optimal mass transport. We provide a dual formulation which we solve by a gradient descent algorithm. This involves solving an associated HJB and Fokker--Planck equation by a finite difference method. Numerical examples for various prescribed terminal distributions are given, showing that we can successfully reach attainable targets. We next consider adding consumption during the investment process, to take into account distribution that either not attainable, or sub-optimal.

[1]  R. Chartrand,et al.  A Gradient Descent Solution to the Monge-Kantorovich Problem , 2009 .

[2]  L. Kantorovich On the Translocation of Masses , 2006 .

[3]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[4]  Toshio Mikami,et al.  Duality Theorem for Stochastic Optimal Control Problem , 2004 .

[5]  G. Loeper,et al.  Robust utility maximization under model uncertainty via a penalization approach , 2019, SSRN Electronic Journal.

[6]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[7]  Julien Rabin,et al.  Regularized Discrete Optimal Transport , 2013, SIAM J. Imaging Sci..

[8]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[9]  G. Loeper The Reconstruction Problem for the Euler-Poisson System in Cosmology , 2006 .

[10]  Xiaolu Tan,et al.  An Explicit Martingale Version of the One-Dimensional Brenier's Theorem with Full Marginals Constraint , 2016 .

[11]  Jean-David Benamou,et al.  Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm , 2017, Numerische Mathematik.

[12]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[13]  Pierre Henry-Labordere,et al.  Model-free Hedging: A Martingale Optimal Transport Viewpoint , 2020 .

[14]  G. Loeper,et al.  Calibration of local‐stochastic volatility models by optimal transport , 2019, Mathematical Finance.

[15]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[16]  Xiaolu Tan,et al.  Optimal transportation under controlled stochastic dynamics , 2013, 1310.0939.

[17]  Sung-Hyuk Cha Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .

[18]  Toshio Mikami,et al.  Two End Points Marginal Problem by Stochastic Optimal Transportation , 2015, SIAM J. Control. Optim..

[19]  Cheng-Few Lee,et al.  Functional Form, Skewness Effect, and the Risk-Return Relationship , 1977, Journal of Financial and Quantitative Analysis.

[20]  U. Frisch,et al.  Reconstruction of the early Universe as a convex optimization problem , 2003 .

[21]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.

[22]  R. Litzenberger,et al.  SKEWNESS PREFERENCE AND THE VALUATION OF RISK ASSETS , 1976 .

[23]  C. Villani Topics in Optimal Transportation , 2003 .

[24]  C. Villani Optimal Transport: Old and New , 2008 .