Projected Efficiency of Polarization-Matched p-In $_{\bm x}$ Ga $_{\bm {1-x}}$ N/i-In $_{\bm y}$ Ga $_{\bm{1-y}}$ N/n-GaN Double Heterojunction Solar Cells

Traditional p-GaN/i-InGaN/n-GaN double heterojunction solar cells have limited power conversion efficiency due to large polarization charges that accumulate at the heterojunction interfaces, leading to severe band bending that, in turn, hinders the carrier transport. In this study, we proposed the use of a p-type InGaN layer to reduce the polarization field and projected the power conversion efficiencies of p-In xGa1-xN/i-In yGa1-y N/n-GaN double heterojunction solar cells that are grown on a c-facet sapphire substrate with various indium components. Numerical simulations predict that a maximal power conversion efficiency that is close to 7% with a short-circuit current density of 4.05 mA/cm2 and an open-circuit voltage of 1.94 V can be achieved with a p-In0.2 Ga0.8N/i-In0.2Ga0.8N/n-GaN structure due to a polarization-matched p-i interface. Further efficiency enhancement with a higher indium composition over 20% is also possible via the redistribution of the built-in potential with n-GaN doping.

[1]  Wladek Walukiewicz,et al.  Finite element simulations of compositionally graded InGaN solar cells , 2010 .

[2]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[3]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[4]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[5]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[6]  Lester F. Eastman,et al.  Growth, fabrication, and characterization of InGaN solar cells , 2008 .

[7]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[8]  Hao-Chung Kuo,et al.  Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer , 2010 .

[9]  Yen-Kuang Kuo,et al.  Simulation of N-face InGaN-based p-i-n solar cells , 2012 .

[10]  U. Mishra,et al.  Polarity inversion of N-face GaN using an aluminum oxide interlayer , 2010 .

[11]  Daniel D. Koleske,et al.  Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells , 2012 .

[12]  Jr-Hau He,et al.  Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells , 2010 .

[13]  Zhibiao Hao,et al.  Theoretical study on critical thicknesses of InGaN grown on (0 0 0 1) GaN , 2011 .

[14]  John F. Muth,et al.  Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .

[15]  E. Fred Schubert,et al.  Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping , 2010 .

[16]  M. H. Crawford,et al.  Internal quantum efficiency and non-radiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[17]  A. Di Carlo,et al.  Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures , 1999 .

[18]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[19]  Y. Kuo,et al.  Numerical Study of the Effects of Hetero-Interfaces, Polarization Charges, and Step-Graded Interlayers on the Photovoltaic Properties of (0001) Face GaN/InGaN p-i-n Solar Cell , 2012, IEEE Journal of Quantum Electronics.

[20]  David Holec,et al.  Critical thickness calculations for InGaN/GaN , 2007 .

[21]  R. Myers,et al.  Exploiting piezoelectric charge for high performance graded InGaN nanowire solar cells , 2012 .

[22]  James S. Speck,et al.  High internal and external quantum efficiency InGaN/GaN solar cells , 2011 .

[23]  Jianwu Sun,et al.  Substantial photo-response of InGaN p–i–n homojunction solar cells , 2009 .

[24]  Eugene E. Haller,et al.  Small band gap bowing in In1−xGaxN alloys , 2002 .

[25]  James S. Speck,et al.  Effect of doping and polarization on carrier collection in InGaN quantum well solar cells , 2011 .

[26]  Seong-Ran Jeon,et al.  Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells , 2010, IEEE Electron Device Letters.

[27]  Naoki Kobayashi,et al.  Minority carrier diffusion lengths in MOVPE-grown n- and p-InGaN and performance of AlGaN/InGaN/GaN double heterojunction bipolar transistors , 2007 .

[28]  Z. Q. Li,et al.  Effects of polarization charge on the photovoltaic properties of InGaN solar cells , 2011 .