Recombining Trinomial Tree for Real Option Valuation with Changing Volatility

This paper presents a recombining trinomial tree for valuing real options with changing volatility. The trinomial tree presented in this paper is constructed by simultaneously choosing such a parameterization that sets a judicious state space while having sensible transition probabilities between the nodes. The volatility changes are modeled with the changing transition probabilities while the state space of the trinomial tree is regular and has a fixed number of time and underlying asset price levels. The presented trinomial lattice can be extended to follow a displaced diffusion process with changing volatility, allowing also taking into account the level of the underlying asset price. The lattice can also be easily parameterized based on a cash flow simulation, using ordinary least squares regression method for volatility estimation. Therefore, the presented recombining trinomial tree with changing volatility is more flexible and robust for practice use than common lattice models while maintaining their intuitive appeal.

[1]  Cash Flow Simulation Embedded Real Options , 2010 .

[2]  James S. Dyer,et al.  Using Binomial Decision Trees to Solve Real-Option Valuation Problems , 2005, Decis. Anal..

[3]  António A. F. Santos Monte Carlo Estimation of Project Volatility for Real Options Analysis , 2006 .

[4]  António Câmara The Valuation of Options on Multiple Operating Cash Flows , 2001 .

[5]  Tero Haahtela,et al.  Regression sensitivity analysis for cash flow simulation based real option valuation , 2010 .

[6]  Johnathan Mun,et al.  Real options analysis course : business cases and software applications , 2003 .

[7]  P. Boyle Option Valuation Using a Three Jump Process , 1986 .

[8]  W. J. Hahn,et al.  A discrete-time approach for valuing real options with underlying mean-reverting stochastic processes , 2005 .

[9]  E SmithJames Alternative Approaches for Solving Real-Options Problems , 2005 .

[10]  Qinhao Lin,et al.  Response to comments , 2004 .

[11]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Contents , 1995 .

[12]  A NOTE ON MODIFIED LATTICE APPROACHES TO OPTION PRICING , 1996 .

[13]  Richard J. Rendleman,et al.  Two-State Option Pricing , 1979 .

[14]  Goldman,et al.  Implied Trinomial Trees of the Volatility Smile , 1996 .

[15]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[16]  James E. Smith,et al.  Alternative Approaches for Solving Real-Options Problems: (Comment on Brandão et al. 2005) , 2005, Decis. Anal..

[17]  Lenos Trigeorgis,et al.  A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments , 1991, Journal of Financial and Quantitative Analysis.

[18]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[19]  San-Lin Chung,et al.  Option Pricing for the Transformed Binomial Class , 2005 .

[20]  R. Jarrow,et al.  APPROXIMATE OPTION VALUATION FOR ARBITRARY STOCHASTIC PROCESSES , 1982 .

[21]  Yisong S. Tian A modified lattice approach to option pricing , 1993 .

[22]  James S. Dyer,et al.  Discrete time modeling of mean-reverting stochastic processes for real option valuation , 2008, Eur. J. Oper. Res..

[23]  Extended Binomial Tree Valuation when the Underlying Asset Distribution is Shifted Lognormal with Higher Moments , 2006 .

[24]  M. Tippett,et al.  Student's distribution and the value of real options , 2003 .

[25]  James S. Dyer,et al.  Response to Comments on Brandão et al. (2005) , 2005, Decis. Anal..

[26]  M. Rubinstein. Displaced Diffusion Option Pricing , 1983 .

[27]  T. Copeland Real Options: A Practitioner's Guide , 2001 .

[28]  B. Kamrad,et al.  Multinomial Approximating Models for Options with k State Variables , 1991 .

[29]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[30]  L. Trigeorgis Real Options: Managerial Flexibility and Strategy in Resource Allocation , 1996 .

[31]  David P. Newton,et al.  On the enhanced convergence of standard lattice methods for option pricing , 2002 .

[32]  Tero Haahtela,et al.  Displaced Diffusion Binomial Tree for Real Option Valuation , 2010 .

[33]  Hailiang Yang,et al.  Option pricing with regime switching by trinomial tree method , 2010, J. Comput. Appl. Math..

[35]  Yisong S. Tian A flexible binomial option pricing model , 1999 .

[36]  M. V. Kramin,et al.  Two‐State Option Pricing: Binomial Models Revisited , 2001 .

[37]  Kuldeep Shastri,et al.  Valuation by Approximation: A Comparison of Alternative Option Valuation Techniques , 1985, Journal of Financial and Quantitative Analysis.

[38]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[39]  Hemantha S. B. Herath,et al.  MULTI-STAGE CAPITAL INVESTMENT OPPORTUNITIES AS COMPOUND REAL Options , 2002 .