Recombining Trinomial Tree for Real Option Valuation with Changing Volatility
暂无分享,去创建一个
[1] Cash Flow Simulation Embedded Real Options , 2010 .
[2] James S. Dyer,et al. Using Binomial Decision Trees to Solve Real-Option Valuation Problems , 2005, Decis. Anal..
[3] António A. F. Santos. Monte Carlo Estimation of Project Volatility for Real Options Analysis , 2006 .
[4] António Câmara. The Valuation of Options on Multiple Operating Cash Flows , 2001 .
[5] Tero Haahtela,et al. Regression sensitivity analysis for cash flow simulation based real option valuation , 2010 .
[6] Johnathan Mun,et al. Real options analysis course : business cases and software applications , 2003 .
[7] P. Boyle. Option Valuation Using a Three Jump Process , 1986 .
[8] W. J. Hahn,et al. A discrete-time approach for valuing real options with underlying mean-reverting stochastic processes , 2005 .
[9] E SmithJames. Alternative Approaches for Solving Real-Options Problems , 2005 .
[10] Qinhao Lin,et al. Response to comments , 2004 .
[11] P. Wilmott,et al. The Mathematics of Financial Derivatives: Contents , 1995 .
[12] A NOTE ON MODIFIED LATTICE APPROACHES TO OPTION PRICING , 1996 .
[13] Richard J. Rendleman,et al. Two-State Option Pricing , 1979 .
[14] Goldman,et al. Implied Trinomial Trees of the Volatility Smile , 1996 .
[15] S. Ross,et al. Option pricing: A simplified approach☆ , 1979 .
[16] James E. Smith,et al. Alternative Approaches for Solving Real-Options Problems: (Comment on Brandão et al. 2005) , 2005, Decis. Anal..
[17] Lenos Trigeorgis,et al. A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments , 1991, Journal of Financial and Quantitative Analysis.
[18] Francis A. Longstaff,et al. Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .
[19] San-Lin Chung,et al. Option Pricing for the Transformed Binomial Class , 2005 .
[20] R. Jarrow,et al. APPROXIMATE OPTION VALUATION FOR ARBITRARY STOCHASTIC PROCESSES , 1982 .
[21] Yisong S. Tian. A modified lattice approach to option pricing , 1993 .
[22] James S. Dyer,et al. Discrete time modeling of mean-reverting stochastic processes for real option valuation , 2008, Eur. J. Oper. Res..
[23] Extended Binomial Tree Valuation when the Underlying Asset Distribution is Shifted Lognormal with Higher Moments , 2006 .
[24] M. Tippett,et al. Student's distribution and the value of real options , 2003 .
[25] James S. Dyer,et al. Response to Comments on Brandão et al. (2005) , 2005, Decis. Anal..
[26] M. Rubinstein.. Displaced Diffusion Option Pricing , 1983 .
[27] T. Copeland. Real Options: A Practitioner's Guide , 2001 .
[28] B. Kamrad,et al. Multinomial Approximating Models for Options with k State Variables , 1991 .
[29] J. Carriére. Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .
[30] L. Trigeorgis. Real Options: Managerial Flexibility and Strategy in Resource Allocation , 1996 .
[31] David P. Newton,et al. On the enhanced convergence of standard lattice methods for option pricing , 2002 .
[32] Tero Haahtela,et al. Displaced Diffusion Binomial Tree for Real Option Valuation , 2010 .
[33] Hailiang Yang,et al. Option pricing with regime switching by trinomial tree method , 2010, J. Comput. Appl. Math..
[35] Yisong S. Tian. A flexible binomial option pricing model , 1999 .
[36] M. V. Kramin,et al. Two‐State Option Pricing: Binomial Models Revisited , 2001 .
[37] Kuldeep Shastri,et al. Valuation by Approximation: A Comparison of Alternative Option Valuation Techniques , 1985, Journal of Financial and Quantitative Analysis.
[38] P. Boyle. A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.
[39] Hemantha S. B. Herath,et al. MULTI-STAGE CAPITAL INVESTMENT OPPORTUNITIES AS COMPOUND REAL Options , 2002 .