An integral equation model for the control of a smallpox outbreak.

[1]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[2]  G. Meiklejohn,et al.  Studies on the virus content of mouth washings in the acute phase of smallpox. , 1961, Bulletin of the World Health Organization.

[3]  Gordon C. Brown IS ROUTINE SMALLPOX VACCINATION NECESSARY IN THE UNITED STATES , 1971 .

[4]  M. K. Mukherjee,et al.  Virus excretion in smallpox. 1. Excretion in the throat, urine, and conjunctiva of patients. , 1973, Bulletin of the World Health Organization.

[5]  F. Fenner Smallpox and its eradication , 1988 .

[6]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[7]  W. O. Kermack,et al.  Contributions to the Mathematical Theory of Epidemics. II. The Problem of Endemicity , 1932 .

[8]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—I , 1991, Bulletin of mathematical biology.

[9]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—II. The problem of endemicity , 1991, Bulletin of mathematical biology.

[10]  John Landers,et al.  Armies of pestilence: the effects of pandemics on history , 1998, Medical History.

[11]  Philip K. Russell,et al.  Smallpox as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. , 1999, JAMA.

[12]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[13]  Philip K. Russell,et al.  Botulinum toxin as a biological weapon: medical and public health management. , 2001, JAMA.

[14]  Steve Leach,et al.  Transmission potential of smallpox in contemporary populations , 2001, Nature.

[15]  A. Roddam Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation O Diekmann and JAP Heesterbeek, 2000, Chichester: John Wiley pp. 303, £39.95. ISBN 0-471-49241-8 , 2001 .

[16]  A L Lloyd,et al.  Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. , 2001, Theoretical population biology.

[17]  J. D. Millar,et al.  Modeling potential responses to smallpox as a bioterrorist weapon. , 2001, Emerging infectious diseases.

[18]  David L. Craft,et al.  Emergency response to a smallpox attack: The case for mass vaccination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Nizam,et al.  Containing Bioterrorist Smallpox , 2002, Science.

[20]  Lawrence M Wein,et al.  Analyzing bioterror response logistics: the case of smallpox. , 2003, Mathematical biosciences.

[21]  Martin Eichner,et al.  Case isolation and contact tracing can prevent the spread of smallpox. , 2003, American journal of epidemiology.

[22]  D. Earn,et al.  Group interest versus self-interest in smallpox vaccination policy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Martin Eichner,et al.  Transmission potential of smallpox: estimates based on detailed data from an outbreak. , 2003, American journal of epidemiology.

[24]  N. Ferguson,et al.  Planning for smallpox outbreaks , 2003, Nature.

[25]  Sally C Morton,et al.  A model for a smallpox-vaccination policy. , 2003, The New England journal of medicine.

[26]  G. Chowell,et al.  SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism , 2003, Journal of Theoretical Biology.

[27]  M G Roberts,et al.  Modelling strategies for minimizing the impact of an imported exotic infection , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  M. Schwehm,et al.  Smallpox: a vulnerable specter. , 2004, Epidemiology.

[29]  J. Seward,et al.  Smallpox , 2006, The Lancet.