Static output-feedback of state-multiplicative systems with application to altitude control

A linear parameter dependent approach for designing a constant output-feedback controller for a linear time-invariant system with stochastic multiplicative Wiener-type noise, that achieves a minimum bound on either the stochastic H 2 or the H ∞ performance level is introduced. A solution is achieved also for the case where in addition to the stochastic parameters, the system matrices reside in a given polytope. In this case, a parameter dependent Lyapunov function is introduced which enables the derivation of the required constant gain via a solution of a set of linear matrix inequalities that corresponds to the vertices of the uncertainty polytope. The stochastic uncertainties appear in both the dynamic and the measurement matrices of the system. The problems are solved using the expected value of the standard performance index over the stochastic parameters. The theory developed is applied to an altitude control example.

[1]  Isaac Yaesh,et al.  Robust H∞ filtering of stationary continuous-time linear systems with stochastic uncertainties , 2001, IEEE Trans. Autom. Control..

[2]  Uri Shaked,et al.  Robust H∞ estimation of stationary discrete-time linear processes with stochastic uncertainties , 2002, Syst. Control. Lett..

[3]  Friedemann Leibfritz,et al.  An LMI-Based Algorithm for Designing Suboptimal Static H2/Hinfinity Output Feedback Controllers , 2000, SIAM J. Control. Optim..

[4]  Uri Shaked,et al.  An LPD approach to robust H2 and H∞ static output-feedback design , 2003, IEEE Trans. Autom. Control..

[5]  C. Kubrusly,et al.  State Feedback H1-Control for Discrete-Time In nite-Dimensional Stochastic Bilinear Systems , 1998 .

[6]  Isaac Yaesh,et al.  Hinfinity control and filtering of discrete-time stochastic systems with multiplicative noise , 2001, Autom..

[7]  C. Nett,et al.  Minimal complexity control law synthesis, part 2: problem solution via H2/H∞ optimal static output feedback , 1989, 1989 American Control Conference.

[8]  Vasile Dragan,et al.  Global Solutions to a Game-Theoretic Riccati Equation of Stochastic Control , 1997 .

[9]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[10]  U. Shaked,et al.  Static H 2 and H ∞ Output-Feedback of Linear Systems with Stochastic Uncertainties , 2003 .

[11]  Tetsuya Iwasaki,et al.  The dual iteration for fixed-order control , 1999, IEEE Trans. Autom. Control..

[12]  D. Hinrichsen,et al.  Stochastic $H^\infty$ , 1998 .

[13]  Jan C. Willems,et al.  Feedback stabilizability for stochastic systems with state and control dependent noise , 1976, Autom..

[14]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[15]  John H. Blakelock,et al.  Automatic control of aircraft and missiles , 1965 .

[16]  Uri Shaked,et al.  Minimum entropy static output-feedback control with an H∞-norm performance bound , 1997, IEEE Trans. Autom. Control..

[17]  V. Dragan,et al.  A /spl gamma/-attenuation problem for discrete-time time-varying stochastic systems with multiplicative noise , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[18]  T. Morozan,et al.  Optimal stabilizing compensator for linear systems with state-dependent noise , 1992 .