The Membrane Potential of the Intraerythrocytic Malaria Parasite Plasmodium falciparum*

The membrane potential (Δψ) of the mature asexual form of the human malaria parasite, Plasmodium falciparum, isolated from its host erythrocyte using a saponin permeabilization technique, was investigated using both the radiolabeled Δψ indicator tetraphenylphosphonium ([3H]TPP+) and the fluorescent Δψ indicator DiBAC4(3) (bis-oxonol). For isolated parasites suspended in a high Na+, low K+ solution, Δψ was estimated from the measured distribution of [3H]TPP+ to be –95 ± 2 mV. Δψ was reduced by the specific V-type H+ pump inhibitor bafilomycin A1, by the H+ ionophore CCCP, and by glucose deprivation. Acidification of the parasite cytosol (induced by the addition of lactate) resulted in a transient hyperpolarization, whereas a cytosolic alkalinization (induced by the addition of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document}) resulted in a transient depolarization. A decrease in the extracellular pH resulted in a membrane depolarization, whereas an increase in the extracellular pH resulted in a membrane hyperpolarization. The parasite plasma membrane depolarized in response to an increase in the extracellular K+ concentration and hyperpolarized in response to a decrease in the extracellular K+ concentration and to the addition of the K+ channel blockers Ba2+ or Cs+ to the suspending medium. The data are consistent with Δψ of the intraerythrocytic P. falciparum trophozoite being due to the electrogenic extrusion of H+ via the V-type H+ pump at the parasite surface. The current associated with the efflux of H+ is countered, in part, by the influx of K+ via Ba2+- and Cs+-sensitive K+ channels in the parasite plasma membrane.

[1]  K. Kirk,et al.  Perturbation of the pump-leak balance for Na(+) and K(+) in malaria-infected erythrocytes. , 2001, American journal of physiology. Cell physiology.

[2]  K. Kirk,et al.  Calcium regulation in the intraerythrocytic malaria parasite Plasmodium falciparum. , 2001, Molecular and biochemical parasitology.

[3]  R. Docampo,et al.  A plasma membrane P-type H(+)-ATPase regulates intracellular pH in Leishmania mexicana amazonensis. , 2002, Molecular and biochemical parasitology.

[4]  I. Slotki,et al.  Chloride Conductive Pathways Which Support Electrogenic H+ Pumping by Leishmania major Promastigotes (*) , 1995, The Journal of Biological Chemistry.

[5]  C. Slayman Movement of ions and electrogenesis in microorganisms. , 1970, American zoologist.

[6]  A. Hope,et al.  The role of protons in determining membrane electrical characteristics inChara corallina , 2005, The Journal of Membrane Biology.

[7]  R. Docampo,et al.  Significant Differences Between Procyclic and Bloodstream Forms of Trypanosoma brucei in the Maintenance of their Plasma Membrane Potential , 2002, The Journal of eukaryotic microbiology.

[8]  R. Docampo,et al.  Proton and sodium pumps regulate the plasma membrane potential of different stages of Trypanosoma cruzi. , 2002, Molecular and biochemical parasitology.

[9]  A. Vaidya,et al.  Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa. , 2002, International journal for parasitology.

[10]  J. Deshusses,et al.  Kinetic study of the plasma-membrane potential in procyclic and bloodstream forms of Trypanosoma brucei brucei using the fluorescent probe bisoxonol. , 1996, The Biochemical journal.

[11]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[12]  T. Mitamura,et al.  Vacuolar H+-ATPase Localized in Plasma Membranes of Malaria Parasite Cells, Plasmodium falciparum, Is Involved in Regional Acidification of Parasitized Erythrocytes* , 2000, The Journal of Biological Chemistry.

[13]  P. Rogers,et al.  The measurement of transmembrane electrical potential with lipophilic cations. , 1996, Biochimica et biophysica acta.

[14]  S. Bhakdi,et al.  Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. , 1996, The Biochemical journal.

[15]  R. Prasad,et al.  Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans. , 1986, Biochimica et biophysica acta.

[16]  P. Christophersen,et al.  The gating of human red cell Ca2(+)-activated K(+)-channels is strongly affected by the permeant cation species. , 1990, Biochimica et biophysica acta.

[17]  G. Utz,et al.  The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes. , 1992, Molecular and biochemical parasitology.

[18]  R. Mikkelsen,et al.  Membrane potential of erythrocytic stages of Plasmodium chabaudi free of the host cell membrane. , 1986, Molecular and biochemical parasitology.

[19]  K. Hellingwerf,et al.  The transmembrane electrical potential in Rhodopseudomonas sphaeroides determined from the distribution of tetraphenylphosphonium after correction for its binding to cell components. , 1983, European journal of biochemistry.

[20]  P. Kane,et al.  Assembly and Regulation of the Yeast Vacuolar H+-ATPase , 2003, Journal of bioenergetics and biomembranes.

[21]  W. Souza,et al.  Vacuolar-type H+-ATPase regulates cytoplasmic pH in Toxoplasma gondii tachyzoites. , 1998, The Biochemical journal.

[22]  H. Kitasato The Influence of H+ on the Membrane Potential and Ion Fluxes of Nitella , 1968, The Journal of general physiology.

[23]  D. Nolan,et al.  Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei. , 2000, European journal of biochemistry.

[24]  P Lee,et al.  X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition. , 1988, The American journal of tropical medicine and hygiene.

[25]  R. Wilson,et al.  Targeting GFP to the malarial mitochondrion. , 2003, Molecular and biochemical parasitology.

[26]  Kiaran Kirk,et al.  pH Regulation in the Intracellular Malaria Parasite, Plasmodium falciparum , 1999, The Journal of Biological Chemistry.

[27]  K. Kirk,et al.  Transport and Metabolism of the Essential Vitamin Pantothenic Acid in Human Erythrocytes Infected with the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[28]  H. Ginsburg,et al.  The mitochondrion of Plasmodium falciparum visualized by rhodamine 123 fluorescence. , 1985, The Journal of protozoology.

[29]  R. Docampo,et al.  The role of a H(+)-ATPase in the regulation of cytoplasmic pH in Trypanosoma cruzi epimastigotes. , 1996, The Biochemical journal.

[30]  G. McFadden,et al.  Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway , 2000, The EMBO journal.

[31]  Conformational Changes in Kir2.1 Channels during NH 4 + -induced Inactivation* , 2003, The Journal of Biological Chemistry.