Sharp Fano resonances in THz metamaterials.

We report on the occurrence of sharp Fano resonances in planar terahertz metamaterials by introducing a weak asymmetry in a two gap split ring resonator. As the structural symmetry of the metamaterial is broken a Fano resonance evolves in the low-frequency flank of the symmetric fundamental dipole mode resonance. This Fano resonance can have much higher Q factors than that known from single gap split ring resonators. Supporting simulations indicate a Q factor of 50 for lowest degree of asymmetry. The Q factor decreases exponentially with increasing asymmetry. Hence, minute structural variations allow for a tuning of the Fano resonance. Such sharp resonances could be exploited for biochemical sensing. Besides, the strong current oscillations excited at the Fano resonance frequency could lead to the design of novel terahertz narrow band emitters.

[1]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[2]  N. Zheludev,et al.  Metamaterial analog of electromagnetically induced transparency. , 2008, Physical review letters.

[3]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .

[4]  Carsten Rockstuhl,et al.  Cryogenic temperatures as a path toward high-Q terahertz metamaterials , 2010 .

[5]  Jianqiang Gu,et al.  Increased frequency shifts in high aspect ratio terahertz split ring resonators , 2009 .

[6]  Carsten Rockstuhl,et al.  Strong influence of packing density in terahertz metamaterials , 2010 .

[7]  Said Zouhdi,et al.  Resonances of Closed Modes in Thin Arrays of Complex Particles , 2002 .

[8]  Jan G. Korvink,et al.  Terahertz metamaterials fabricated by inkjet printing , 2009 .

[9]  Zhen Tian,et al.  Terahertz superconductor metamaterial , 2010 .

[10]  Sher-Yi Chiam,et al.  Controlling metamaterial resonances via dielectric and aspect ratio effects , 2010 .

[11]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[12]  Martin Koch,et al.  Terahertz metasurfaces with high Q-factors , 2011 .

[13]  Remigius Zengerle,et al.  Negative index bulk metamaterial at terahertz frequencies. , 2008, Optics express.

[14]  Francesco De Angelis,et al.  Graphene in a photonic metamaterial. , 2010, Optics express.

[15]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[16]  Weili Zhang,et al.  Optically thin terahertz metamaterials. , 2008, Optics express.

[17]  Weijia Wen,et al.  Fano effect of metamaterial resonance in terahertz extraordinary transmission , 2011 .

[18]  D P Tsai,et al.  Spectral collapse in ensembles of metamolecules. , 2009, Physical review letters.

[19]  D P Tsai,et al.  Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. , 2009, Optics express.

[20]  H. Moser,et al.  Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. , 2005, Physical review letters.

[21]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[22]  Martin Koch,et al.  Asymmetric planar terahertz metamaterials. , 2010, Optics express.

[23]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[24]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[25]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[26]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[27]  N. Zheludev,et al.  Highly tunable optical activity in planar achiral terahertz metamaterials. , 2010, Optics express.

[28]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[29]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[30]  A. K. Azad,et al.  Terahertz metamaterial with asymmetric transmission , 2009, 0908.2524.

[31]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[32]  N. Vitanov,et al.  Electromagnetically induced transparency and slow light in an array of metallic nanoparticles , 2009 .

[33]  Igal Brener,et al.  Metamaterials for THz polarimetric devices. , 2009, Optics express.

[34]  Christian Debus,et al.  Frequency selective surfaces for high sensitivity terahertz sensing , 2007, 2104.05462.

[35]  C. Soukoulis,et al.  Low-loss metamaterials based on classical electromagnetically induced transparency. , 2008, Physical review letters.

[36]  Martin Koch,et al.  High Q-factor metasurfaces based on miniaturized asymmetric single split resonators , 2009 .

[37]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[38]  Weili Zhang,et al.  Effect of metal permittivity on resonant properties of terahertz metamaterials. , 2008, Optics letters.

[39]  Masanori Hangyo,et al.  Three-dimensional bulk metamaterials operating in the terahertz range , 2010 .

[40]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[41]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[42]  F. Lederer,et al.  Analogue of electromagnetically induced transparency in a terahertz metamaterial , 2009, 0907.1937.

[43]  Basudev Lahiri,et al.  Asymmetric split ring resonators for optical sensing of organic materials. , 2009, Optics express.

[44]  N. Zheludev,et al.  Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. , 2010, Physical review letters.

[45]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[46]  Nikolay I. Zheludev,et al.  Metamaterial-Induced Transparency:Sharp Fano Resonances and Slow Light , 2009 .

[47]  Carsten Rockstuhl,et al.  The impact of nearest neighbor interaction on the resonances in terahertz metamaterials , 2009 .

[48]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[49]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[50]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[51]  Ranjan Singh,et al.  Tuning the resonance in high-temperature superconducting terahertz metamaterials. , 2010, Physical review letters.

[52]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[53]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .