Structural breaks and GARCH models of exchange rate volatility

We investigate the empirical relevance of structural breaks for GARCH models of exchange rate volatility using both in-sample and out-of-sample tests. We find significant evidence of structural breaks in the unconditional variance of seven of eight US dollar exchange rate return series over the 1980-2005 period-implying unstable GARCH processes for these exchange rates-and GARCH(1,1) parameter estimates often vary substantially across the subsamples defined by the structural breaks. We also find that it almost always pays to allow for structural breaks when forecasting exchange rate return volatility in real time. Combining forecasts from different models that accommodate structural breaks in volatility in various ways appears to offer a reliable method for improving volatility forecast accuracy given the uncertainty surrounding the timing and size of the structural breaks. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  A. Timmermann,et al.  Market timing and return prediction under model instability , 2002 .

[2]  Davide Pettenuzzo,et al.  Forecasting Time Series Subject to Multiple Structural Breaks , 2004, SSRN Electronic Journal.

[3]  Francis X. Dieobold Modeling The persistence Of Conditional Variances: A Comment , 1986 .

[4]  Eric Hillebrand Neglecting Parameter Changes in Autoregressive Models , 2004 .

[5]  K. West,et al.  The Predictive Ability of Several Models of Exchange Rate Volatility , 1994 .

[6]  Tae-Hwy Lee,et al.  Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood , 2004 .

[7]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[8]  Andrew J. Patton,et al.  Volatility Forecast Evaluation and Comparison Using Imperfect Volatility Proxies , 2005 .

[9]  Norman R. Swanson,et al.  Predictive Density Evaluation , 2005 .

[10]  Franc J. G. M. Klaassen,et al.  Improving GARCH volatility forecasts with regime-switching GARCH , 2002 .

[11]  Andrew T. Levin,et al.  A Practitioner's Guide to Robust Covariance Matrix Estimation , 1996 .

[12]  Anders Rahbek,et al.  ASYMPTOTIC INFERENCE FOR NONSTATIONARY GARCH , 2004, Econometric Theory.

[13]  Sangyeol Lee,et al.  On the Cusum test for parameter changes in garch(1,1) Models , 2000 .

[14]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[15]  P. Perron,et al.  Estimating and testing linear models with multiple structural changes , 1995 .

[16]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[17]  Philip Hans Franses,et al.  Non-Linear Time Series Models in Empirical Finance , 2000 .

[18]  Christopher J. Neely Target zones and conditional volatility: the role of realignments , 1999 .

[19]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[20]  Clive W. J. Granger,et al.  Non-stationarities in stock returns , 2004 .

[21]  Piotr Kokoszka,et al.  GARCH processes: structure and estimation , 2003 .

[22]  E. Ghysels,et al.  Detecting Multiple Breaks in Financial Market Volatility Dynamics , 2002 .

[23]  M. Solá,et al.  Structural Breaks and Garch Modelling , 1996 .

[24]  R. Leipus,et al.  Testing for parameter changes in ARCH models , 1999 .

[25]  Piotr Kokoszka,et al.  Change-point estimation in ARCH models , 2000 .

[26]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[27]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[28]  Michael W. McCracken Asymptotics for out of sample tests of Granger causality , 2007 .

[29]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[30]  Norman R. Swanson,et al.  Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes , 2005 .

[31]  Why does the GARCH(1,1) model fail to provide sensible longer- horizon volatility forecasts? , 2005 .

[32]  Sangyeol Lee,et al.  The Cusum of Squares Test for Scale Changes in Infinite Order Moving Average Processes , 2001 .

[33]  Todd E. Clark,et al.  Evaluating Long – Horizon Forecasts ∗ , 2004 .

[34]  W. Newey,et al.  Automatic Lag Selection in Covariance Matrix Estimation , 1994 .

[35]  T. Mikosch,et al.  Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects , 2004, Review of Economics and Statistics.

[36]  Todd E. Clark,et al.  Tests of Equal Forecast Accuracy and Encompassing for Nested Models , 1999 .

[37]  Marc S. Paolella,et al.  Conditional density and value‐at‐risk prediction of Asian currency exchange rates , 2000 .

[38]  Norman R. Swanson,et al.  Chapter 5 Predictive Density Evaluation , 2006 .

[39]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[40]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[41]  P. Hansen,et al.  Consistent Ranking of Volatility Models , 2006 .

[42]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[43]  M. Oka ON ""ECONOMIC PROGRLESS AND ECONOMIC SURPLUS"" BY PROF. PAUL A. BARAN , 1986 .

[44]  Valentina Corradi,et al.  Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries , 2005 .

[45]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[46]  Tim Bollerslev,et al.  COMMON PERSISTENCE IN CONDITIONAL VARIANCES , 1993 .

[47]  Todd E. Clark,et al.  Improving Forecast Accuracy by Combining Recursive and Rolling Forecasts , 2008 .

[48]  Josep Lluís Carrión i Silvestre,et al.  Testing for changes in the unconditional variance of financial time series , 2004 .

[49]  R. Baillie,et al.  The Message in Daily Exchange Rates , 1989 .

[50]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[51]  Todd E. Clark,et al.  Evaluating Direct Multistep Forecasts , 2005 .

[52]  S. Wei,et al.  A New Look at Exchange Rate Volatility and Trade Flows , 2004 .

[53]  Thomas Mikosch,et al.  Long range dependence effects and ARCH modeling , 2003 .

[54]  P. Perron,et al.  Computation and Analysis of Multiple Structural-Change Models , 1998 .

[55]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[56]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[57]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[58]  Marc S. Paolella,et al.  A New Approach to Markov-Switching GARCH Models , 2004 .

[59]  Eric Hillebrand Neglecting parameter changes in GARCH models , 2005 .

[60]  J. Stock,et al.  Forecasting Output and Inflation: The Role of Asset Prices , 2001 .

[61]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[62]  Pierre Perron,et al.  An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts , 2006 .

[63]  G. C. Tiao,et al.  Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance , 1994 .

[64]  C. Granger,et al.  Nonstationarities in Stock Returns , 2005, Review of Economics and Statistics.

[65]  D. Dijk,et al.  Testing for changes in volatility in heteroskedastic time series - a further examination , 2004 .

[66]  Pedro L. Valls Pereira,et al.  Small sample properties of GARCH estimates and persistence , 2006 .

[67]  T. Teräsvirta,et al.  Evaluating GARCH models , 2002 .

[68]  M. Hashem Pesaran,et al.  Selection of estimation window in the presence of breaks , 2007 .

[69]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[70]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[71]  Juri Marcucci Forecasting Stock Market Volatility with Regime-Switching GARCH Models , 2005 .

[72]  R. Baillie,et al.  INTRA DAY AND INTER MARKET VOLATILITY IN FOREIGN EXCHANGE RATES , 1991 .

[73]  A. Timmermann,et al.  Small Sample Properties of Forecasts from Autoregressive Models Under Structural Breaks , 2003, SSRN Electronic Journal.