Generalized Results on Monoids as Memory

We show that some results from the theory of group automata and monoid automata still hold for more general classes of monoids and models. Extending previous work for finite automata over commutative groups, we demonstrate a context-free language that can not be recognized by any rational monoid automaton over a finitely generated permutable monoid. We show that the class of languages recognized by rational monoid automata over finitely generated completely simple or completely 0-simple permutable monoids is a semi-linear full trio. Furthermore, we investigate valence pushdown automata, and prove that they are only as powerful as (finite) valence automata. We observe that certain results proven for monoid automata can be easily lifted to the case of context-free valence grammars.

[1]  Jon M. Corson Extended Finite Automata and Word Problems , 2005, Int. J. Algebra Comput..

[2]  Robert H. Gilman,et al.  Geometric and Computational Perspectives on Infinite Groups , 1995 .

[3]  Henning Fernau,et al.  Valence Grammars with Target Sets , 2001, Words, Semigroups, and Transductions.

[4]  Robert H. Gilman,et al.  Formal languages and infinite groups , 1995, Geometric and Computational Perspectives on Infinite Groups.

[5]  Victor Mitrana,et al.  The Accepting Power of Finite Automata over Groups , 1997, New Trends in Formal Languages.

[6]  Elaine Render,et al.  Rational Monoid and Semigroup Automata , 2010 .

[7]  Oscar H. Ibarra,et al.  Finite Automata with Multiplication , 1976, Theor. Comput. Sci..

[8]  J. Howie Fundamentals of semigroup theory , 1995 .

[9]  Mark Kambites Word problems recognisable by deterministic blind monoid automata , 2006, Theor. Comput. Sci..

[10]  Aldo de Luca,et al.  Finiteness and Regularity in Semigroups and Formal Languages , 1999, Monographs in Theoretical Computer Science An EATCS Series.

[11]  Mark Kambites,et al.  Formal Languages and Groups as Memory , 2006, math/0601061.

[12]  Georg Zetzsche On the Capabilities of Grammars, Automata, and Transducers Controlled by Monoids , 2011, ICALP.

[13]  David E. Muller,et al.  Groups, the Theory of Ends, and Context-Free Languages , 1983, J. Comput. Syst. Sci..

[14]  Victor Mitrana,et al.  Extended finite automata over groups , 2001, Discret. Appl. Math..

[15]  Yechezkel Zalcstein,et al.  The Burnside problem for semigroups , 1975 .

[16]  Mario Curzio,et al.  Su di un problema combinatorio in teoria dei gruppi , 1983 .

[17]  G. Lallement Semigroups and combinatorial applications , 1979 .

[18]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[19]  Oscar H. Ibarra,et al.  Semilinear Sets and Counter Machines: a Brief Survey , 2015, Fundam. Informaticae.

[20]  Henning Fernau,et al.  Sequential grammars and automata with valences , 2002, Theor. Comput. Sci..

[21]  Mark Kambites,et al.  Semigroup automata with rational initial and terminal sets , 2010, Theor. Comput. Sci..

[22]  Victor Mitrana,et al.  Finite Automata over Free Groups , 2000, Int. J. Algebra Comput..