Safety verification and reachability analysis for hybrid systems

Safety verification and reachability analysis for hybrid systems is a very active research domain. Many approaches that seem quite different, have been proposed to solve this complex problem. This paper presents an overview of various approaches for autonomous, continuous-time hybrid systems and presents them with respect to basic problems related to verification.

[1]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[2]  Thao Dang Approximate Reachability Computation for Polynomial Systems , 2006, HSCC.

[3]  Roberto Bagnara,et al.  Possibly Not Closed Convex Polyhedra and the Parma Polyhedra Library , 2002, SAS.

[4]  Didier Dumur,et al.  Predictive control for hybrid systems. Implications of polyhedral pre-computations , 2008 .

[5]  Sergio Yovine,et al.  Towards Computing Phase Portraits of Polygonal Differential Inclusions , 2002, HSCC.

[6]  Rajeev Alur,et al.  Formal verification of hybrid systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[7]  Gerd Behrmann,et al.  IFAC World Congress , 2005 .

[8]  Antoine Girard,et al.  Reachability analysis of non-linear systems using conservative approximations , 2003 .

[9]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[10]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[11]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[12]  Nancy A. Lynch,et al.  Safety Verification of Model Helicopter Controller Using Hybrid Input/Output Automata , 2003, HSCC.

[13]  George J. Pappas,et al.  Geometric programming relaxations for linear system reachability , 2004, Proceedings of the 2004 American Control Conference.

[14]  Stefan Ratschan,et al.  Safety Verification of Hybrid Systems by Constraint Propagation Based Abstraction Refinement , 2005, HSCC.

[15]  Timothy J. Hickey,et al.  Rigorous Modeling of Hybrid Systems Using Interval Arithmetic Constraints , 2004, HSCC.

[16]  Eugene Asarin,et al.  Abstraction by Projection and Application to Multi-affine Systems , 2004, HSCC.

[17]  Alberto Bemporad,et al.  Verification of Hybrid Systems via Mathematical Programming , 1999, HSCC.

[18]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.

[19]  Enrico Tronci,et al.  Automatic Verification of a Turbogas Control System with the Mur varphi Verifier , 2003, HSCC.

[20]  C. Belta,et al.  Reachability analysis of multi-affine systems , 2010 .

[21]  Martin Guay,et al.  Discrete Abstractions for Two-Dimensional Nearly Integrable Continuous Systems , 2003, ADHS.

[22]  Ádám M. Halász,et al.  Understanding the Bacterial Stringent Response Using Reachability Analysis of Hybrid Systems , 2004, HSCC.

[23]  Ashish Tiwari,et al.  Generating Polynomial Invariants for Hybrid Systems , 2005, HSCC.

[24]  Gerardo Lafferriere,et al.  A New Class of Decidable Hybrid Systems , 1999, HSCC.

[25]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[26]  Paulo Tabuada,et al.  Composing Abstractions of Hybrid Systems , 2002, HSCC.

[27]  Thomas A. Henzinger,et al.  A Comparison of Control Problems for Timed and Hybrid Systems , 2002, HSCC.

[28]  Bruce H. Krogh,et al.  Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes , 2006, HSCC.

[29]  Calin Belta,et al.  Reachability analysis of multi-affine systems , 2006, HSCC.

[30]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[31]  Wolfgang Kühn Zonotope Dynamics in Numerical Quality Control , 1997, VisMath.

[32]  Olaf Stursberg,et al.  Verification of a Cruise Control System using Counterexample-Guided Search , 2004 .

[33]  Davide Bresolin,et al.  Reachability computation for hybrid systems with Ariadne , 2008 .

[34]  Anders Rantzer,et al.  Primal-dual tests for safety and reachability , 2005 .

[35]  David Q. Mayne,et al.  Reachability analysis of discrete-time systems with disturbances , 2006, IEEE Transactions on Automatic Control.

[36]  Ashish Tiwari,et al.  Nonlinear Systems: Approximating Reach Sets , 2004, HSCC.

[37]  Sebastian Engell,et al.  OPTIMIZATION-BASED SAFETY ANALYSIS OF AN INDUSTRIAL-SCALE EVAPORATION SYSTEM WITH HYBRID DYNAMICS , 2007 .

[38]  Antoine Girard,et al.  Approximate simulation Relations for Hybrid Systems , 2006, ADHS.

[39]  Max Donath,et al.  American Control Conference , 1993 .

[40]  Janan Zaytoon,et al.  On the formal verification of hybrid systems , 2004 .

[41]  Goran Frehse PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech , 2005, HSCC.

[42]  A. Girard,et al.  Efficient reachability analysis for linear systems using support functions , 2008 .

[43]  Antoine Girard,et al.  Approximate Simulation Relations for Hybrid Systems11This research is partially supported by the Région Rhône-Alpes (Projet CalCel) and the NSF Presidential Early CAREER (PECASE) Grant 0132716. , 2006 .

[44]  Alexandre M. Bayen,et al.  Computational techniques for the verification of hybrid systems , 2003, Proc. IEEE.

[45]  Antonis Papachristodoulou,et al.  Safety Verification of Controlled Advanced Life Support System Using Barrier Certificates , 2005, HSCC.

[46]  O. Stursberg,et al.  Computing Reachable Sets of Hybrid Systems Using a Combination of Zonotopes and Polytopes , 2010 .

[47]  Hervé Guéguen,et al.  Hybrid abstractions of affine systems , 2006 .

[48]  Goran Frehse,et al.  PHAVer: algorithmic verification of hybrid systems past HyTech , 2005, International Journal on Software Tools for Technology Transfer.

[49]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[50]  Oded Maler,et al.  Recent progress in continuous and hybrid reachability analysis , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[51]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[52]  Ashish Tiwari Approximate Reachability for Linear Systems , 2003, HSCC.

[53]  Olaf Stursberg,et al.  Efficient Representation and Computation of Reachable Sets for Hybrid Systems , 2003, HSCC.

[54]  Bruce H. Krogh,et al.  Verification of infinite-state dynamic systems using approximate quotient transition systems , 2001, IEEE Trans. Autom. Control..

[55]  Rajeev Alur,et al.  Reachability Analysis of Hybrid Systems via Predicate Abstraction , 2002, HSCC.

[56]  C. Combastel A state bounding observer based on zonotopes , 2003, 2003 European Control Conference (ECC).

[57]  Y. Candau,et al.  Reachability analysis of uncertain nonlinear systems using guaranteed set integration , 2008 .

[58]  B. Krogh,et al.  Reachability Analysis for Affine Systems Using ε-Decomposition , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[59]  Rajeev Alur,et al.  Progress on Reachability Analysis of Hybrid Systems Using Predicate Abstraction , 2003, HSCC.

[60]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[61]  Sumit Kumar Jha,et al.  Refining Abstractions of Hybrid Systems Using Counterexample Fragments , 2005, HSCC.

[62]  Philippe Schnoebelen,et al.  Systems and Software Verification , 2001, Springer Berlin Heidelberg.

[63]  T. Dang Vérification et synthèse des systèmes hybrides , 2000 .

[64]  Saÿsa V. Rakovic,et al.  Approximate Reachability Analysis for Linear Discrete Time Systems Using Homothety and Invariance , 2008 .