On convex quadratic approximation

In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of statistics and optimization. We show that convexity can be enforced in the multivariate case by using semidefinite programming techniques.

[1]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[2]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[3]  Ajg Bert Schoofs Experimental Design and Structural Optimization , 1988 .

[4]  G. Box,et al.  Empirical Model-Building and Response Surfaces. , 1990 .

[5]  A. S. Nemirovsky,et al.  Conic formulation of a convex programming problem and duality , 1992 .

[6]  Vassili Toropov Multipoint approximation method in optimization problems with expensive function values , 1992 .

[7]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[8]  Vassili Toropov,et al.  Multiparameter structural optimization using FEM and multipoint explicit approximations , 1993 .

[9]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[10]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[11]  Florencio I. Utreras,et al.  Convexity-preserving interpolatory subdivision , 1994, Comput. Aided Geom. Des..

[12]  P. Toint,et al.  An Algorithm using Quadratic Interpolation for Unconstrained Derivative Free Optimization , 1996 .

[13]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[14]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[15]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[16]  Katya Scheinberg,et al.  On the convergence of derivative-free methods for unconstrained optimization , 1997 .

[17]  E. de Klerk,et al.  Interior Point Methods for Semidefinite Programming , 1997 .

[18]  F. Kuijt Convexity preserving interpolation - stationary nonlinear subdivision and splines , 1998 .

[19]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[20]  Raymond H. Myers,et al.  Response Surface Methodology--Current Status and Future Directions , 1999 .

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  Dick den Hertog,et al.  Optimizing color picture tubes by high-cost nonlinear programming , 2002, Eur. J. Oper. Res..