Towards perceptual intelligence: statistical modeling of human individual and interactive behaviors

This thesis presents a computational framework for the automatic recognition and prediction of di erent kinds of human behaviors from video cameras and other sensors, via perceptually intelligent systems that automatically sense and correctly classify human behaviors, by means ofMachine Perception and Machine Learning techniques. In the thesis I develop the statistical machine learning algorithms (dynamic graphical models) necessary for detecting and recognizing individual and interactive behaviors. In the case of the interactions two Hidden Markov Models (HMMs) are coupled in a novel architecture called Coupled Hidden Markov Models (CHMMs) that explicitly captures the interactions between them. The algorithms for learning the parameters from data as well as for doing inference with those models are developed and described. Four systems that experimentally evaluate the proposed paradigm are presented: (1) LAFTER, an automatic face detection and tracking system with facial expression recognition; (2) a Tai-Chi gesture recognition system; (3) a pedestrian surveillance system that recognizes typical human to human interactions; (4) and a SmartCar for driver maneuver recognition. These systems capture human behaviors of di erent nature and increasing complexity: rst, isolated, single-user facial expressions, then, two-hand gestures and human-to-human interactions, and nally complex behaviors where human performance is mediated by a machine, more speci cally, a car. The metric that is used for quantifying the quality of the behavior models is their accuracy: how well they are able to recognize the behaviors on testing data. Statistical machine learning usually su ers from lack of data for estimating all the parameters in the models. In order to alleviate this problem, synthetically generated data are used to bootstrap the models creating 'prior models' that are further trained using much less real data than otherwise it would be required. The Bayesian nature of the approach let us do so. The predictive power of these models lets us categorize human actions very soon after the beginning of the action. Because of the generic nature of the typical behaviors of each of the implemented systems there is a reason to believe that this approach to modeling human behavior would generalize to other dynamic human-machine systems. This would allow us to recognize automatically people's intended action, and thus build control systems that dynamically adapt to suit the human's purposes better. Thesis Advisor: Alex P. Pentland Title: Academic Head and Toshiba Professor of Media Arts and Sciences Media Laboratory, MIT

[1]  V. Isham An Introduction to Spatial Point Processes and Markov Random Fields , 1981 .

[2]  D. Lewkowicz,et al.  A dynamic systems approach to the development of cognition and action. , 2007, Journal of cognitive neuroscience.

[3]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[4]  Moshe Ben-Akiva,et al.  MODELS OF FREEWAY LANE CHANGING AND GAP ACCEPTANCE BEHAVIOR , 1996 .

[5]  Tom Johnston,et al.  MacSHAPA and the enterprise of exploratory sequential data analysis (ESDA) , 1994, Int. J. Hum. Comput. Stud..

[6]  Jun Zhang,et al.  A Markov Random Field Model-Based Approach to Image Interpretation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Rahul Sukthankar,et al.  RACCOON: A Real-time Autonomous Car Chaser Operating Optimally At Night , 1993, Proceedings of the Intelligent Vehicles '93 Symposium.

[8]  Steven A. Shafer,et al.  Selective Perception for Robot Driving , 1993, AAAI.

[9]  Wray L. Buntine A Guide to the Literature on Learning Probabilistic Networks from Data , 1996, IEEE Trans. Knowl. Data Eng..

[10]  John R. Anderson,et al.  Cognitive Modeling and Intelligent Tutoring , 1990, Artif. Intell..

[11]  Dean A. Pomerleau,et al.  RALPH: rapidly adapting lateral position handler , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[12]  George R. S. Weir,et al.  Human Computer Interaction and Complex Systems , 1991 .

[13]  Anthony G. Cohn,et al.  Building qualitative event models automatically from visual input , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[14]  I. Pilowsky,et al.  Towards the quantification of facial expressions with the use of a mathematic model of the face , 1986 .

[15]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[16]  Erik Hollnagel,et al.  Cognitive Systems Engineering: New wine in new bottles , 1999, Int. J. Hum. Comput. Stud..

[17]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Aaron F. Bobick,et al.  Recognition and interpretation of parametric gesture , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[19]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[20]  Daniel G. Bobrow,et al.  Allen Newell: the entry into complex information processing , 1994 .

[21]  Irfan Essa,et al.  Analysis, interpretation and synthesis of facial expressions , 1995 .

[22]  H. Buxton,et al.  Advanced visual surveillance using Bayesian networks , 1997 .

[23]  Alex Pentland,et al.  Graphical Models for Recognizing Human Interactions , 1998, NIPS.

[24]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[25]  N. Wermuth,et al.  Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .

[26]  W. Bechtel,et al.  Connectionism and the Mind , 1991 .

[27]  Bernard Widrow,et al.  Neural networks: applications in industry, business and science , 1994, CACM.

[28]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1998, Learning in Graphical Models.

[29]  Matthew Brand,et al.  Understanding manipulation in video , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[30]  Stephen M. Omohundro,et al.  Surface Learning with Applications to Lipreading , 1993, NIPS.

[31]  T. Fearn The Jackknife , 2000 .

[32]  Robert C. Bolles,et al.  The Representation Space Paradigm of Concurrent Evolving Object Descriptions , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  M. A. Stoneridge,et al.  Practical horseman's book of riding, training, and showing hunters and jumpers , 1989 .

[34]  Alex Pentland,et al.  Active gesture recognition using partially observable Markov decision processes , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[35]  William W. Gaver,et al.  A Virtual Window on media space , 1995, CHI '95.

[36]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[37]  Larry S. Davis,et al.  Recognizing Human Facial Expressions From Long Image Sequences Using Optical Flow , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Aaron F. Bobick,et al.  Learning visual behavior for gesture analysis , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[39]  Kazuo Ohzeki,et al.  Interactive model-based coding of facial image sequence with a new motion detection algorithm , 1996 .

[40]  Paul M. Churchland,et al.  Scientific realism and the plasticity of mind: Sentential epistemologies and the natural science of epistemic engines , 1979 .

[41]  Hans-Hellmut Nagel,et al.  From image sequences towards conceptual descriptions , 1988, Image Vis. Comput..

[42]  Keith Waters,et al.  A muscle model for animation three-dimensional facial expression , 1987, SIGGRAPH.

[43]  Chil-Woo Lee,et al.  Automatic recognition of human facial expressions , 1995, Proceedings of IEEE International Conference on Computer Vision.

[44]  A. Dawid,et al.  Probabilistic expert systems and graphical modelling: a case study in drug safety , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[45]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[46]  A. Poritz,et al.  Hidden Markov models: a guided tour , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[47]  Dana K. Smith,et al.  Automated Protocol Analysis , 1993, Hum. Comput. Interact..

[48]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[49]  A. Pentland,et al.  Towards real-time recognition of driver intentions , 1997, Proceedings of Conference on Intelligent Transportation Systems.

[50]  G. Miller,et al.  Language and Perception , 1976 .

[51]  Kurt VanLehn,et al.  Cirrus: An Automated Protocol Analysis Tool. , 1987 .

[52]  Kuo-Chu Chang,et al.  Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks , 2013, UAI.

[53]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[54]  J R Treat,et al.  TRI-LEVEL STUDY OF THE CAUSES OF TRAFFIC ACCIDENTS: FINAL REPORT , 1979 .

[55]  Michael I. Jordan,et al.  Probabilistic Independence Networks for Hidden Markov Probability Models , 1997, Neural Computation.

[56]  C. Lebiere,et al.  The Atomic Components of Thought , 1998 .

[57]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[58]  Michael I. Jordan,et al.  Hidden Markov Decision Trees , 1996, NIPS.

[59]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[60]  Rahul Sukthankar,et al.  Situation Awareness for Tactical Driving , 1997 .

[61]  A. James McKnight,et al.  Driver Education Task Analysis. Volume I: Task Descriptions. Final Report (August 1969-July 1970). , 1970 .

[62]  J. Shao AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .

[63]  H. Egeth,et al.  Parallel versus serial processing in visual search: further evidence from subadditive effects of visual quality. , 1991 .

[64]  H. Martin Hunke,et al.  Locating and Tracking of Human Faces with Neural Networks , 1994 .

[65]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[66]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[67]  Alex Pentland,et al.  Cooperative Robust Estimation Using Layers of Support , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[69]  Thad Starner,et al.  Visual Recognition of American Sign Language Using Hidden Markov Models. , 1995 .

[70]  Yannick Lallement A Hierarchical Ensemble of Decision Trees Applied to Classifying Data from a Psychological Experiment , 1998, FLAIRS Conference.

[71]  Stuart J. Russell,et al.  Stochastic simulation algorithms for dynamic probabilistic networks , 1995, UAI.

[72]  Geoffrey E. Hinton,et al.  Mean field networks that learn to discriminate temporally distorted strings , 1991 .

[73]  David C. Hogg,et al.  Learning the distribution of object trajectories for event recognition , 1996, Image Vis. Comput..

[74]  Chris Stauer Automatic hierarchical classication using time-based co-occurrences , 1999 .

[75]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[76]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[77]  L. Wittgenstein Philosophical investigations = Philosophische Untersuchungen , 1958 .

[78]  Gavriel Salvendy,et al.  Handbook of Human-Computer Interaction (Book Review) , 1999, International journal of human computer interactions.

[79]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[80]  Kiyoharu Aizawa,et al.  Model-based image coding advanced video coding techniques for very low bit-rate applications , 1995, Proc. IEEE.

[81]  Takeo Kanade,et al.  First Results in Robot Road-Following , 1985, IJCAI.

[82]  Peter C. M. Molenaar,et al.  Neural networks simulation of a discrete model of continious effects of irrelevant stimuli , 1990 .

[83]  John R. Anderson,et al.  Mapping eye movements to cognitive processes , 1999 .

[84]  T. Gelder,et al.  Mind as Motion: Explorations in the Dynamics of Cognition , 1995 .

[85]  P. Thagard,et al.  Modelling Conceptual Revolutions , 1996, Dialogue.

[86]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[87]  Frank E. Ritter,et al.  Developing Process Models as Summaries of HCI Action Sequences , 1994, Hum. Comput. Interact..

[88]  E. D. Dickmanns,et al.  A Curvature-based Scheme for Improving Road Vehicle Guidance by Computer Vision , 1987, Other Conferences.

[89]  A. Pentland,et al.  Toward augmented control systems , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[90]  Tim van Gelder,et al.  Compositionality: A Connectionist Variation on a Classical Theme , 1990, Cogn. Sci..

[91]  Julio Rosenblatt,et al.  DAMN: a distributed architecture for mobile navigation , 1997, J. Exp. Theor. Artif. Intell..

[92]  Christine M. Mitchell,et al.  Validation of Intent Inferencing by a Model-Based Operator's Association , 1990, Int. J. Man Mach. Stud..

[93]  Frank E. Ritter A Methodology and Software Environment for Testing Process Model's Sequential Predictions with Protocols , 1992 .

[94]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[95]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[96]  Zoubin Ghahramani,et al.  Factorial Learning and the EM Algorithm , 1994, NIPS.

[97]  Alexandros Eleftheriadis,et al.  Model-assisted coding of video teleconferencing sequences at low bit rates , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[98]  Aaron F. Bobick,et al.  Computers Seeing Action , 1996, BMVC.

[99]  H. Yamada,et al.  Dimensions of visual information for categorizing facial expressions of emotion , 1993 .

[100]  Michael I. Jordan,et al.  Learning Fine Motion by Markov Mixtures of Experts , 1995, NIPS.

[101]  Allen Newell,et al.  The psychology of human-computer interaction , 1983 .

[102]  Flavia Sparacino,et al.  DirectIVE-- choreographing media for interactive virtual environments , 1996 .

[103]  Erik D. Reichle,et al.  Toward a model of eye movement control in reading. , 1998, Psychological review.

[104]  Radford M. Neal Connectionist Learning of Belief Networks , 1992, Artif. Intell..

[105]  L. M. M.-T. Theory of Probability , 1929, Nature.

[106]  Alex Pentland,et al.  Real-time self-calibrating stereo person tracking using 3-D shape estimation from blob features , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[107]  M. Goodale Image and Brain: The Resolution of the Imagery Debate , 1995 .

[108]  Allen Newell,et al.  PAS-II: An Interactive Task-Free Version of an Automatic Protocol Analysis System , 1973, IEEE Transactions on Computers.

[109]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[110]  H. White,et al.  Cross-Validation Estimates IMSE , 1993, NIPS 1993.

[111]  Stellan Ohlsson,et al.  Automated Cognitive Modeling , 1984, AAAI.

[112]  A. Pentland,et al.  Blob - An unsupervised clustering approach to spatial preprocessing of MSS imagery , 1977 .

[113]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[114]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[115]  Paul R. Cohen,et al.  Concepts From Time Series , 1998, AAAI/IAAI.

[116]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[117]  William W. Gaver The affordances of media spaces for collaboration , 1992, CSCW '92.

[118]  Keith Gardels AUTOMATIC CAR CONTROLS FOR ELECTRONIC HIGHWAYS , 1960 .

[119]  Stanley J. Rosenschein,et al.  A dynamical systems perspective on agent-environment interaction , 1996 .

[120]  M. Helander Applicability of drivers' electrodermal response to the design of the traffic environment. , 1978, The Journal of applied psychology.

[121]  Alex Pentland,et al.  A synthetic agent system for Bayesian modeling of human interactions , 1999, AGENTS '99.

[122]  Timothy F. Cootes,et al.  A unified approach to coding and interpreting face images , 1995, Proceedings of IEEE International Conference on Computer Vision.

[123]  Alex Pentland Classification by Clustering , 1976 .

[124]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[125]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[126]  William T. Freeman,et al.  Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.

[127]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[128]  John A. Michon,et al.  A critical view of driver behavior models: What do we know , 1985 .

[129]  David S. Prerau,et al.  Developing and managing expert systems , 1989 .

[130]  R. von Tomkewitsch,et al.  Dynamic route guidance and interactive transport management with ALI-SCOUT , 1991 .

[131]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[132]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[133]  M. Stone Asymptotics for and against cross-validation , 1977 .

[134]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[135]  Jitendra Malik,et al.  Automatic Symbolic Traffic Scene Analysis Using Belief Networks , 1994, AAAI.

[136]  S. Kosslyn Image and mind , 1982 .

[137]  Ross D. Shachter,et al.  Global Conditioning for Probabilistic Inference in Belief Networks , 1994, UAI.

[138]  Zoubin Ghahramani,et al.  Learning Dynamic Bayesian Networks , 1997, Summer School on Neural Networks.

[139]  D. Titterington Recursive Parameter Estimation Using Incomplete Data , 1984 .

[140]  Andrew Blake,et al.  Determining facial expressions in real time , 1995, Proceedings of IEEE International Conference on Computer Vision.

[141]  T. Gelder,et al.  It's about time: an overview of the dynamical approach to cognition , 1996 .

[142]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[143]  G. Globus Toward a Noncomputational Cognitive Neuroscience , 1992, Journal of Cognitive Neuroscience.

[144]  Ronald R Knipling,et al.  SINGLE-VEHICLE ROADWAY DEPARTURE CRASHES: PROBLEM SIZE ASSESSMENT AND STATISTICAL DESCRIPTION. FINAL REPORT , 1994 .

[145]  Tommi S. Jaakkola,et al.  Maximum Entropy Discrimination , 1999, NIPS.

[146]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[147]  James L. Crowley,et al.  Multi-modal tracking of faces for video communications , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[148]  Ronald C. Arkin,et al.  Using Genetic Algorithms to Learn Reactive Control Parameters for Autonomous Robotic Navigation , 1994, Adapt. Behav..

[149]  B A Galler,et al.  COLLISION WARNING USING NEIGHBORING VEHICLE INFORMATION , 1996 .

[150]  David G. Stork,et al.  Using deformable templates to infer visual speech dynamics , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[151]  Michael I. Jordan,et al.  Boltzmann Chains and Hidden Markov Models , 1994, NIPS.

[152]  R C Vanstrum,et al.  PERCEPTION MODEL FOR DESCRIBING AND DEALING WITH DRIVER INVOLVEMENT IN HIGHWAY ACCIDENTS , 1971 .

[153]  Garrison W. Cottrell,et al.  Representing Face Images for Emotion Classification , 1996, NIPS.

[154]  Padhraic J. Smyth,et al.  Hidden Markov models for fault detection in dynamic systems , 1993 .

[155]  P. L. C. Van Geert The dynamics of Father Brown , 1996 .

[156]  James L. McGaugh,et al.  Brain Organization and Memory: Cells, Systems, and Circuits , 1992 .

[157]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[158]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[159]  V. Lawrence Parsegian,et al.  This Cybernetic World of Men, Machines, and Earth Systems, , 1972 .

[160]  D. M. Hoedemaeker,et al.  Modeling driver behaviour with different degrees of automation : a hierarchical decision framework of interacting mental models , 1998 .

[161]  Tomohiro Yamamura,et al.  A Driver Behavior Recognition Method Based on a Driver Model Framework , 2000 .

[162]  G. Parisi,et al.  Statistical Field Theory , 1988 .

[163]  Alex Pentland,et al.  Modeling and Prediction of Human Behavior , 1999, Neural Computation.

[164]  Guy Marchal,et al.  Continuous Voxel Classification by Stochastic Relaxation: Theory and Application to MR Imaging and MR Angiography , 1993, IPMI.

[165]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[166]  G. Ryle,et al.  心的概念 = The concept of mind , 1962 .

[167]  Dean A. Pomerleau,et al.  Neural Networks For Intelligent Vehicles , 1993, Proceedings of the Intelligent Vehicles '93 Symposium.

[168]  D. Legge,et al.  Information and skill , 1976 .

[169]  Jean Petitot-Cocorda Les catastrophes de la parole, de Roman Jakobson à René Thom , 1985 .

[170]  Jens Rasmussen,et al.  Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering , 1986 .

[171]  H. Rauch Solutions to the linear smoothing problem , 1963 .

[172]  Stuart J. Russell,et al.  The BATmobile: Towards a Bayesian Automated Taxi , 1995, IJCAI.

[173]  Milind Tambe,et al.  Intelligent Automated Agents for Tactical Air Simulation: A Progress Report , 1994 .

[174]  Alex Pentland,et al.  Invariant features for 3-D gesture recognition , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[175]  Michael J. Black,et al.  Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion , 1995, Proceedings of IEEE International Conference on Computer Vision.

[176]  J. Dupré The Conscious Mind: In Search of a Fundamental Theory , 2000 .

[177]  J. H. Rillings,et al.  Advanced driver information systems , 1990 .

[178]  Michael C. Mozer,et al.  Mathematical Perspectives on Neural Networks , 1996 .

[179]  Alex Pentland,et al.  Probabilistic visual learning for object detection , 1995, Proceedings of IEEE International Conference on Computer Vision.

[180]  D E Kieras,et al.  A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. , 1997, Psychological review.

[181]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[182]  R. Gibbs The Poetics of Mind: Figurative Thought, Language, and Understanding , 1994 .

[183]  James F. Cremer,et al.  The Software Architecture for Scenario Control in the Iowa Driving Simulator , 1993 .

[184]  A. P. Dawid,et al.  Applications of a general propagation algorithm for probabilistic expert systems , 1992 .

[185]  Geoffrey E. Hinton,et al.  Parameter estimation for linear dynamical systems , 1996 .

[186]  Alex Pentland,et al.  Camera Self-Calibration From One Point Correspondence , 1995 .

[187]  Dean A. Pomerleau,et al.  Neural Network Perception for Mobile Robot Guidance , 1993 .

[188]  Theodore J. Rosenthal,et al.  A Computer Simulation Analysis of Safety Critical Maneuvers for Assessing Ground Vehicle Dynamic Stability , 1993 .

[189]  I. Masaki,et al.  Vision-based vehicle guidance , 1992, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation.

[190]  L. Breiman,et al.  Submodel selection and evaluation in regression. The X-random case , 1992 .

[191]  M. Ikegaya Development of a Lane Following Assistance System , 1998 .

[192]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[193]  Aaron F. Bobick,et al.  Parsing multi-agent interactions , 1998, CVPR 1998.

[194]  Matthew Brand,et al.  Coupled hidden Markov models for modeling interacting processes , 1997 .

[195]  Alex Pentland,et al.  Facial expression recognition using a dynamic model and motion energy , 1995, Proceedings of IEEE International Conference on Computer Vision.

[196]  Stuart L. Crawford,et al.  Constructor: A System for the Induction of Probabilistic Models , 1990, AAAI.

[197]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[198]  Charles E. Thorpe,et al.  Tactical-level simulation for intelligent transportation systems , 1998 .

[199]  Alex Waibel,et al.  Gaze Tracking Based on Face‐Color , 1995 .

[200]  Robert F. Stengel,et al.  Probability-based decision making for automated highway driving , 1991 .

[201]  Bonnie E. John Extensions of GOMS analyses to expert performance requiring perception of dynamic visual and auditory information , 1990, CHI '90.

[202]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[203]  A. Damasio Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition , 1989, Cognition.

[204]  Yoshua Bengio,et al.  Input-output HMMs for sequence processing , 1996, IEEE Trans. Neural Networks.

[205]  Junji Yamato,et al.  Recognizing human action in time-sequential images using hidden Markov model , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[206]  John D. Lee,et al.  Predicting Driver Behavior using Advanced Traveler Information Systems , 1994 .

[207]  Alex Pentland,et al.  Parametrized structure from motion for 3D adaptive feedback tracking of faces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[208]  Jonathan D. Courtney Automatic video indexing via object motion analysis , 1997, Pattern Recognit..