Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value

Cortical motor planning is shaped by “subjective absolute value”: planning activity is strongly enhanced for large expected gains in subjects who believe they perform well; conversely, activity is higher for large expected losses in subjects who think they perform poorly.

[1]  R. Andersen,et al.  Human Posterior Parietal Cortex Plans Where to Reach and What to Avoid , 2010, The Journal of Neuroscience.

[2]  N. Daw,et al.  Human Reinforcement Learning Subdivides Structured Action Spaces by Learning Effector-Specific Values , 2009, The Journal of Neuroscience.

[3]  R. Andersen,et al.  Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits , 2009, Neuron.

[4]  John T Serences,et al.  Value-Based Modulations in Human Visual Cortex , 2008, Neuron.

[5]  M. Landy,et al.  Decision making, movement planning and statistical decision theory , 2008, Trends in Cognitive Sciences.

[6]  E. Rolls,et al.  Cerebral Cortex Advance Access published June 22, 2007 Expected Value, Reward Outcome, and Temporal Difference Error Representations in a Probabilistic Decision Task , 2022 .

[7]  Samuel M. McClure,et al.  BOLD Responses Reflecting Dopaminergic Signals in the Human Ventral Tegmental Area , 2008, Science.

[8]  Brian Knutson,et al.  Valence and salience contribute to nucleus accumbens activation , 2008, NeuroImage.

[9]  P. Glimcher,et al.  The neural correlates of subjective value during intertemporal choice , 2007, Nature Neuroscience.

[10]  R. Andersen,et al.  Posterior Parietal Cortex Encodes Autonomously Selected Motor Plans , 2007, Neuron.

[11]  J. O'Doherty,et al.  Contributions of the Amygdala to Reward Expectancy and Choice Signals in Human Prefrontal Cortex , 2007, Neuron.

[12]  Michael X. Cohen,et al.  Different neural systems adjust motor behavior in response to reward and punishment , 2007, NeuroImage.

[13]  Gregory R. Samanez-Larkin,et al.  Anticipation of monetary gain but not loss in healthy older adults , 2007, Nature Neuroscience.

[14]  J. O'Doherty,et al.  Neural coding of reward-prediction error signals during classical conditioning with attractive faces. , 2007, Journal of neurophysiology.

[15]  S. Kapur,et al.  Separate brain regions code for salience vs. valence during reward prediction in humans , 2007, Human brain mapping.

[16]  Daniel W. Hommer,et al.  Anticipating instrumentally obtained and passively-received rewards: A factorial fMRI investigation , 2007, Behavioural Brain Research.

[17]  Michael L. Platt,et al.  Neural correlates of reward and attention in macaque area LIP , 2006, Neuropsychologia.

[18]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.

[19]  C. Curtis Prefrontal and parietal contributions to spatial working memory , 2006, Neuroscience.

[20]  R. Andersen,et al.  Cognitive neural prosthetics. , 2010, Annual review of psychology.

[21]  Kae Nakamura,et al.  Basal ganglia orient eyes to reward. , 2006, Journal of neurophysiology.

[22]  J. O'Doherty,et al.  Predictive Neural Coding of Reward Preference Involves Dissociable Responses in Human Ventral Midbrain and Ventral Striatum , 2006, Neuron.

[23]  Okihide Hikosaka,et al.  Functional differences between macaque prefrontal cortex and caudate nucleus during eye movements with and without reward , 2006, Experimental Brain Research.

[24]  K. Doya,et al.  Representation of Action-Specific Reward Values in the Striatum , 2005, Science.

[25]  Christopher S. Monk,et al.  Choice selection and reward anticipation: an fMRI study , 2004, Neuropsychologia.

[26]  P. Glimcher,et al.  Activity in Posterior Parietal Cortex Is Correlated with the Relative Subjective Desirability of Action , 2004, Neuron.

[27]  M. Delgado,et al.  Motivation-dependent responses in the human caudate nucleus. , 2004, Cerebral cortex.

[28]  R. Andersen,et al.  Cognitive Control Signals for Neural Prosthetics , 2004, Science.

[29]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[30]  J. Maunsell Neuronal representations of cognitive state: reward or attention? , 2004, Trends in Cognitive Sciences.

[31]  G. Pagnoni,et al.  Human Striatal Responses to Monetary Reward Depend On Saliency , 2004, Neuron.

[32]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[33]  M. Roesch,et al.  Neuronal Activity Related to Reward Value and Motivation in Primate Frontal Cortex , 2004, Science.

[34]  M. Delgado,et al.  Modulation of Caudate Activity by Action Contingency , 2004, Neuron.

[35]  S. Kapur,et al.  Direct Activation of the Ventral Striatum in Anticipation of Aversive Stimuli , 2003, Neuron.

[36]  Samuel M. McClure,et al.  Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum , 2003, Neuron.

[37]  Karl J. Friston,et al.  Temporal Difference Models and Reward-Related Learning in the Human Brain , 2003, Neuron.

[38]  M. Delgado,et al.  Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations , 2003, Cognitive, affective & behavioral neuroscience.

[39]  N Ramnani,et al.  Instructed delay activity in the human prefrontal cortex is modulated by monetary reward expectation. , 2003, Cerebral cortex.

[40]  D. Kahneman,et al.  Heuristics and Biases: The Psychology of Intuitive Judgment , 2002 .

[41]  O. Hikosaka,et al.  Visual and Anticipatory Bias in Three Cortical Eye Fields of the Monkey during an Adaptive Decision-Making Task , 2002, The Journal of Neuroscience.

[42]  D. Kahneman,et al.  Heuristics and Biases: List of Contributors , 2002 .

[43]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[44]  Brian Knutson,et al.  Anticipation of Increasing Monetary Reward Selectively Recruits Nucleus Accumbens , 2001, The Journal of Neuroscience.

[45]  D. Kahneman,et al.  Functional Imaging of Neural Responses to Expectancy and Experience of Monetary Gains and Losses tasks with monetary payoffs , 2001 .

[46]  Samuel M. McClure,et al.  Predictability Modulates Human Brain Response to Reward , 2001, The Journal of Neuroscience.

[47]  J. Gold,et al.  Neural computations that underlie decisions about sensory stimuli , 2001, Trends in Cognitive Sciences.

[48]  E. Rolls,et al.  Abstract reward and punishment representations in the human orbitofrontal cortex , 2001, Nature Neuroscience.

[49]  L. Nystrom,et al.  Tracking the hemodynamic responses to reward and punishment in the striatum. , 2000, Journal of neurophysiology.

[50]  Brian Knutson,et al.  FMRI Visualization of Brain Activity during a Monetary Incentive Delay Task , 2000, NeuroImage.

[51]  J. Hollerman,et al.  Reward processing in primate orbitofrontal cortex and basal ganglia. , 2000, Cerebral cortex.

[52]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[53]  M N Shadlen,et al.  Motion perception: seeing and deciding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[54]  John B. Kidd,et al.  Judgement under Uncertainty: Heuristics and Biasses , 1983 .

[55]  A. Tversky,et al.  Judgment under uncertainty: Availability , 1982 .

[56]  A. Tversky,et al.  Judgment under uncertainty: Frontmatter , 1982 .

[57]  A. Tversky,et al.  The framing of decisions and the psychology of choice. , 1981, Science.

[58]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.