Simple tracially $\mathcal{Z}$-absorbing C*-algebras

We define a notion of tracial Z-absorption for simple not necessarily unital C*-algebras. This extends the notion defined by Hirshberg and Orovitz for unital (simple) C*-algebras. We provide examples which show that tracially Z-absorbing C*-algebras need not be Z-absorbing. We show that tracial Z-absorption passes to hereditary C*-subalgebras, direct limits, matrix algebras, minimal tensor products with arbitrary simple C*-algebras. We find sufficient conditions for a simple, separable, tracially Z-absorbing C*-algebra to be Z-absorbing. We also study the Cuntz semigroup of a simple tracially Z-absorbing C*-algebra and prove that it is almost unperforated and weakly almost divisible.

[1]  M. Rørdam On the structure of simple C∗-algebras tensored with a UHF-algebra, II , 1991 .

[2]  Mikael Rørdam,et al.  Classification of Nuclear C*-Algebras. Entropy in Operator Algebras , 2001 .

[3]  W. Winter Nuclear dimension and -stability of pure C ∗ -algebras , 2010, 1006.2731.

[4]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[5]  B. Blackadar Operator Algebras , 1998 .

[6]  G. Elliott,et al.  The cone of lower semicontinuous traces on a C*-algebra , 2008, 0805.3122.

[7]  Shaloub Razak On the Classification of Simple Stably Projectionless C*-Algebras , 2002, Canadian Journal of Mathematics.

[8]  N. Phillips Freeness of actions of finite groups on C*-algebras , 2009, 0902.4891.

[9]  D. Handelman,et al.  Dimension functions and traces on C∗-algebras , 1982 .

[10]  U. Haagerup Quasitraces on exact C*-algebras are traces , 2014, 1403.7653.

[11]  J. Rosenberg Appendix to O. Bratteli’s paper on “Crossed products of UHF algebras” , 1979 .

[12]  G. Elliott,et al.  Simple stably projectionless C*-algebras with generalized tracial rank one , 2017, Journal of Noncommutative Geometry.

[13]  On classification of non-unital simple amenable C*-algebras, I , 2016, 1611.04440.

[14]  Lawrence G. Brown,et al.  Stable isomorphism of hereditary subalgebras of $C^*$-algebras. , 1977 .

[15]  Joachim Cuntz,et al.  K-theory and C*-algebras , 1984 .

[16]  Wilhelm Winter,et al.  Completely positive maps of order zero , 2009, 0903.3290.

[17]  E. Kirchberg,et al.  Non-simple Purely Innnite C -algebras , 1999 .

[18]  Andrew S. Toms,et al.  K-Theory for operator algebras. Classification of C$^*$-algebras , 2009, 0902.3381.

[19]  Xinhui Hongbing Jiang,et al.  On a simple unital projectionless C*-algebra , 1999 .

[20]  Crossed products by finite cyclic group actions with the tracial Rokhlin property , 2003, math/0609785.

[21]  G. Pedersen,et al.  C∗-algebras of real rank zero , 1991 .

[22]  Huaxin Lin An Introduction to the Classification of Amenable C-Algebras , 2001 .

[23]  Andrew Loehmer The nuclear dimension , 1993 .

[24]  G. Pedersen C-Algebras and Their Automorphism Groups , 1979 .

[25]  A. Kishimoto Outer automorphisms and reduced crossed products of simpleC*-algebras , 1981 .

[26]  Yasuhiko Sato,et al.  Strict comparison and Z-absorption of nuclear C*-algebras , 2011 .

[27]  Huaxin Lin The Tracial Topological Rank of C*‐Algebras , 2001 .

[28]  Ilan Hirshberg,et al.  Tracially Z-absorbing C*-algebras , 2012, 1208.2444.

[29]  N. Phillips,et al.  Permanence of stable rank one for centrally large subalgebras and crossed products by minimal homeomorphisms , 2015, Journal of Operator Theory.

[30]  Wilhelm Winter,et al.  Localizing the Elliott conjecture at strongly self-absorbing C*-algebras , 2007, 0708.0283.

[31]  Andrew S. Toms,et al.  An algebraic approach to the radius of comparison , 2010, 1008.4024.

[32]  M. Chial,et al.  in simple , 2003 .

[33]  Norio Nawata,et al.  Finite group actions on certain stably projectionless C*-algebras with the Rohlin property , 2013, 1308.0429.

[34]  D. Avitzour Free Products of C ∗ -Algebras , 1982 .

[35]  N. C. Phillips Large subalgebras , 2014, 1408.5546.

[36]  H. Osaka,et al.  Tracially quasidiagonal extensions and topological stable rank , 2003 .

[37]  A. Tikuisis,et al.  Nuclear dimension of simple $$\mathrm {C}^*$$-algebras , 2019, Inventiones mathematicae.

[38]  E. Kirchberg,et al.  Infinite Non-simple C*-Algebras: Absorbing the Cuntz Algebra O∞ , 2002 .

[39]  Huaxin Lin,et al.  Lifting KK-elements, asymptotic unitary equivalence and classification of simple C∗-algebras , 2008, 0802.1484.

[40]  Mikael Rordam,et al.  The stable and the real rank of Z-absorbing C*-algebras , 2004 .

[41]  P. Jorgensen,et al.  FREE PRODUCT VON NEUMANN ALGEBRAS OF TYPE III , 2010 .

[42]  Wilhelm Winter,et al.  Strongly self-absorbing C*-algebras , 2005, math/0502211.

[43]  Bhishan Jacelon,et al.  A simple, monotracial, stably projectionless C*‐algebra , 2010, J. Lond. Math. Soc..

[44]  Wilhelm Winter,et al.  COVERING DIMENSION AND QUASIDIAGONALITY , 2002 .

[45]  Ilan Hirshberg,et al.  Rokhlin dimension: obstructions and permanence properties , 2014, Documenta Mathematica.

[46]  Jerry Turrentine,et al.  Appendix O: , 2011, Looting or Missioning.

[47]  J. Cuntz K-theory for certain C-algebras , 1981 .

[48]  A. Tikuisis,et al.  Uniform Property Γ , 2021 .

[49]  Dana P. Williams,et al.  Morita Equivalence and Continuous-Trace $C^*$-Algebras , 1998 .