In-situ studies of magnetostriction in TbxHo1-xFe1.9Mn0.1 Laves compounds

[1]  Tianli Zhang,et al.  High-performance magnetostrictive composites with large particles volume fraction , 2019, Journal of Alloys and Compounds.

[2]  K. Yakushiji,et al.  Enhanced perpendicular magnetocrystalline anisotropy energy in an artificial magnetic material with bulk spin-momentum coupling , 2018, Physical Review B.

[3]  Junjie Du,et al.  Composition anisotropy compensation and magnetostriction of Co-doped Laves compounds Tb 0.2 Dy 0.8−x Pr x Fe 1.93 (0 ≤ x ≤ 0.40) , 2018, Solid State Communications.

[4]  Yu’an Huang,et al.  Spin reorientation and giant low-temperature magnetostriction of polycrystalline NdFe1.9 compound , 2018 .

[5]  G. Markandeyulu,et al.  Magnetostriction and spin reorientation studies on Sm0.9-xNdxPr0.1Fe1.93 (x = 0, 0.12, 0.2, 0.24, 0.32, 0.36) compounds , 2018 .

[6]  Yang Ren,et al.  Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe2. , 2018, Inorganic chemistry.

[7]  Juan Du,et al.  Composition anisotropy compensation and magnetoelastic properties of Mn-doped TbxHo1−xFe2 Laves compounds (0.08 ≤ x ≤ 0.16) , 2017 .

[8]  T. Ma,et al.  Tailoring volume magnetostriction of giant magnetostrictive materials by engineering magnetic domain morphology , 2017 .

[9]  K. Harada,et al.  Lorentz microscopy and small-angle electron diffraction study of magnetic textures in L a 1 -x S r x Mn O 3 (0.15 , 2016, 2005.00720.

[10]  Yang Ren,et al.  In-situ studies of low-field large magnetostriction in Tb 1−x Dy x Fe 2 compounds by synchrotron-based high-energy x-ray diffraction , 2016 .

[11]  A. Yan,et al.  An in-situ study of magnetic domain structures in undercooled Fe-29.5 at. %Pd magnetostrictive alloys by Lorentz microscopy and electron holography , 2015 .

[12]  A. Makino,et al.  In-situ Lorentz microscopy of Fe85Si2B8P4Cu1 nanocrystalline soft magnetic alloys , 2015 .

[13]  Shaolong Tang,et al.  Magnetostrictive properties of Tbx(Pr0.5Nd0.5)1 xFe1.93 cubic Laves alloys , 2013 .

[14]  Juan Du,et al.  Giant low-field magnetostriction of epoxy/TbxDy1−x(Fe0.8Co0.2)2 composites (0.20 ≤ x ≤ 0.40) , 2013 .

[15]  M. Wuttig,et al.  Morphotropic phase boundaries in ferromagnets: Tb(1-x)Dy(x)Fe2 alloys. , 2013, Physical review letters.

[16]  W. Ren,et al.  Progress in bulk MgCu2-type rare-earth iron magnetostrictive compounds , 2013 .

[17]  E. Snoeck,et al.  Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy , 2013 .

[18]  Junjie Du,et al.  Structural, magnetic and magnetostrictive properties of Co-doped Tb1-xHoxFe2 (0 ≤ x ≤ 1.0) alloys , 2011 .

[19]  X. Ren,et al.  Large magnetostriction from morphotropic phase boundary in ferromagnets. , 2010, Physical review letters.

[20]  V. Chandrasekaran,et al.  Structural, magnetic and Mössbauer studies on magnetostrictive Ho1―xTbxFe1.95 [x = 0-1] , 2009 .

[21]  Z. Zhang,et al.  Direct experimental evidence for anisotropy compensation between Dy3+ and Pr3+ ions , 2006 .

[22]  Y. Murakami,et al.  Magnetic domain structure in the presence of very thin martensite plates: Electron holography study on a thin-foil Fe–31.2 at.%Pd alloy , 2006 .

[23]  S. Kasiviswanathan,et al.  Magnetic and electrical properties of Ho0.85Tb0.15Fe2−xMnx (0, 0.5, 1.0, 1.5) , 2004 .

[24]  M. Hirscher,et al.  Magnetic anisotropy and giant magnetostriction of amorphous TbDyFe films , 1994 .

[25]  M. Dariel,et al.  Spin-orientation diagram of the pseudobinaryTb1−xDyxFe2Laves compounds , 1977 .

[26]  A. Clark,et al.  Magnetostriction and Structural Distortion in Rare Earth Intermetallics , 1976 .

[27]  F. L. Carter,et al.  Magnetostrictive properties of Hox Tb1 −x Fe2 intermetallic compounds , 1974 .

[28]  M. Dariel,et al.  Magnetic Anisotropy and Spin Rotations inHoxTb1−xFe2Cubic Laves Compounds , 1972 .