Grain boundary effects on cyclic deformation and fatigue damage

The cyclic deformation behaviors of single- and polycrystals were well documented in the past three decades. it has been recognized that there existed great difference in the fatigue damage mechanisms between single- and polycrystals, which can be mainly attributed to the effects of grain boundaries (GBs) and the crystallographic orientations. In the present work, a series of research work mainly on copper bicrystals with various GBs and different component crystals have been systematically investigated, including the macroscopic cyclic stress-strain responses and fatigue damage mechanisms in micro-scale. Firstly, direct evidence is offered to show the obvious strengthening effect caused by the large-angle GBs during cyclic deformation. The data of cyclic stress-strain responses will be presented to show the effects of the GBs and the crystallographic orientations in the macro-scale. Next, the influence of various GBs on fatigue cracking behavior will be considered for the crystalline materials. Clear evidences are shown that the interactions of persistent slip bands (PSBs) with various GBs play a decisive role in the intergranular fatigue cracking during cyclic deformation. it is suggested that the intergranular fatigue cracking strongly depends on the interactions of PSBs with GBs in fatigued crystals, rather than the GB structure itself. The underlying fatigue damage mechanisms were further discussed in terms of the different interactions between PSBs and three types of GBs. (c) 2008 Elsevier Ltd. All rights reserved.

[1]  A. N. May Random Slip Model of Fatigue and Coffin's Law , 1960, Nature.

[2]  A. S. Cheng,et al.  The high cycle fatigue life of copper single crystals tested under plastic-strain-controlled conditions , 1981 .

[3]  Petr Lukáš,et al.  Cyclic stress-strain response and fatigue life of metals in low amplitude region , 1973 .

[4]  N. Ho,et al.  The study of fatigue in polycrystalline copper under various strain amplitude at stage I: crack initiation and propagation , 2000 .

[5]  H. Mughrabi,et al.  Crystallographic features of intergranular crack initiation in fatigued copper polycrystals , 1992 .

[6]  A. S. Cheng,et al.  FATIGUE LIFE BEHAVIOR OF COPPER SINGLE CRYSTALS. PART II: MODEL FOR CRACK NUCLEATION IN PERSISTENT SLIP BANDS , 1981 .

[7]  A. Zaoui,et al.  Grain boundary effects in deformed bicrystals , 1982 .

[8]  Y. Saeki,et al.  Plastic deformation of aluminum bicrystals 〈100〉 oriented , 1978 .

[9]  R. Raj,et al.  Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573 K , 1985 .

[10]  J. Hirth The influence of grain boundaries on mechanical properties , 1972 .

[11]  M. Bassim,et al.  Cyclic strain hardening in polycrystalline copper , 1994 .

[12]  James Alfred Ewing,et al.  The fracture of metals under repeated alternations of stress , 1903, Proceedings of the Royal Society of London.

[13]  H. Margolin,et al.  Bauschinger effect during cyclic straining of two ductile phase alloys , 1979 .

[14]  K. Obrtlík,et al.  Cyclic strain localization in polycrystalline copper at room temperature and low temperatures , 1991 .

[15]  Z. S. Basinski,et al.  Low amplitude fatigue of copper single crystals—III. PSB sections , 1985 .

[16]  Yue Zhang,et al.  The cyclic deformation behavior of Cu single crystal oriented for double slip , 1995 .

[17]  C. P. Chang,et al.  Dislocation-free zones in fatigued copper polycrystals , 1996 .

[18]  Z. S. Basinski,et al.  Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals , 1992 .

[19]  Zijian Wang,et al.  Fatigue crack initiation and early growth in a copper bicrystal with a grain boundary perpendicular to stress axis , 1996 .

[20]  L. Kunz,et al.  Comparison of fatigue behaviour of single crystals and polycrystals , 1994 .

[21]  H. Mughrabi,et al.  The cyclic hardening and saturation behaviour of copper single crystals , 1978 .

[22]  K. V. Rasmussen,et al.  Dislocation microstructures in fatigued copper polycrystals , 1981 .

[23]  J. Gemperlová,et al.  Slip in a {112} bicrystal with asymmetrical orientations of the loading axis , 1991 .

[24]  V. Kuokkala,et al.  Random strain cycling of large-grained polycrystalline copper , 1982 .

[25]  H. Margolin,et al.  Beta brass bicrystal and tricrystal stress strain behavior , 1977 .

[26]  Z. S. Basinski,et al.  Low amplitude fatigue of copper single crystals—II. Surface observations , 1985 .

[27]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[28]  C. Laird,et al.  Crack nucleation and stage I propagation in high strain fatigue—I. Microscopic and interferometric observations , 1978 .

[29]  Campbell Laird,et al.  «Effect of loading mode on the cyclic response and the associated substructure of polycrystalline copper in the high-cycle regime» , 1993 .

[30]  G. Palumbo,et al.  Interface control for resistance to intergranular cracking , 1994 .

[31]  Zujian Wang,et al.  Evolution and microstructural characteristics of deformation bands in fatigued copper single crystals , 2001 .

[32]  W. Wood Formation of fatigue cracks , 1958 .

[33]  N. Thompson,et al.  Xi. The origin of fatigue fracture in copper , 1956 .

[34]  Z. Zhang,et al.  Fatigue crack initiation and fracture behavior of a copper bicrystal with a perpendicular grain boundary , 1999 .

[35]  Petr Lukáš,et al.  On the cyclic stress-strain curve evaluation in low cycle fatigue , 1977 .

[36]  A. Zaoui,et al.  Slip heterogeneities in deformed aluminium bicrystals , 1980 .

[37]  H. Mughrabi,et al.  Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities , 1979 .

[38]  A. T. Winter,et al.  A model for the fatigue of copper at low plastic strain amplitudes , 1974 .

[39]  B. Ralph,et al.  A field ion microscope study of atomic configuration at grain boundaries , 1964 .

[40]  L. Lim Surface intergranular cracking in large strain fatigue , 1987 .

[41]  T. Yoshimura,et al.  Effect of Grain Boundary Microstructure on Superplastic Deformation of Al-Li-Cu-Mg-Zr Alloy , 1999 .

[42]  E. A. Stach,et al.  Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel , 2004, Science.

[43]  C. Laird,et al.  The cyclic stress-strain response of copper at low strains—i. Constant amplitude testing , 1981 .

[44]  H. Christ On the orientation of cyclic-slip-induced intergranular fatigue cracks in face-centered cubic metals , 1989 .

[45]  Z. G. Wang,et al.  Cyclic deformation behaviour of a copper bicrystal with common primary slip planes , 2001 .

[46]  G. Li,et al.  Cyclic deformation behavior of a co-axial symmetrical copper bicrystal , 1996 .

[47]  H. S. Fong,et al.  Fatigue damage and crack nucleation mechanisms at intermediate strain amplitudes , 1990 .

[48]  S. Miura,et al.  Plastic deformation of aluminium bicrystals having ∑7 and ∑21 coincidence tilt boundaries , 1980 .

[49]  Z. G. Wang,et al.  Cyclic deformation features of a copper bicrystal with an embedded grain and surrounding grain boundary , 1999 .

[50]  K. Obrtlík,et al.  Cyclic stress-strain response of polycrystalline copper in a wide range of plastic strain amplitudes , 1992 .

[51]  N. Jin,et al.  Dislocation structures in cyclically deformed [001] copper crystals , 1984 .

[52]  P. Komninou,et al.  Slip transfer across low-angle grain boundaries of deformed titanium , 1995 .

[53]  S. Lin,et al.  Computer simulation of the effect of grain size on the properties of polycrystalline specimens by finite element method , 1991 .

[54]  C. Laird,et al.  Matrix hardening behavior and the nucleation stress for persistent slip bands in fatigued monocrystalline copper , 1986 .

[55]  N. Jin Dislocation structures in fatigued copper single crystals oriented for double-slip , 1983 .

[56]  O. B. Pedersen,et al.  The cyclic stress-strain curve of polycrystals , 1982 .

[57]  Zhongguang Wang,et al.  Cyclic deformation behavior and dislocation structures of [001] copper single crystals—II. Characteristics of dislocation structures , 1997 .

[58]  G. Li,et al.  Cyclic deformation behavior of copper bicrystals , 1996 .

[59]  C. Laird,et al.  Strain localization in cyclic deformation of copper single crystals , 1975 .

[60]  T. Lepistö,et al.  Comparison of the cyclic stress-strain behaviour of single-and 〈111〉 multiple-slip-oriented copper single crystals , 1986 .

[61]  B. Adams,et al.  Grain-boundary structure effects on intergranular stress corrosion cracking of alloy X-750 , 1996 .

[62]  Campbell Laird,et al.  Overview of fatigue behavior in copper single crystals—II. Population, size distribution and growth kinetics of Stage I cracks for tests at constant strain amplitude , 1989 .

[63]  A. Rollett,et al.  Effect of grain size and annealing texture on the cyclic response and the substructure evolution of polycrystalline copper , 1993 .

[64]  J. Polák,et al.  Dislocation structures in polycrystalline copper cycled at low plastic strain amplitudes , 1993 .

[65]  K. Differt,et al.  A model of extrusions and intrusions in fatigued metals. II: Surface roughening by random irreversible slip , 1986 .

[66]  U. F. Kocks Independent slip systems in crystals , 1964 .

[67]  H. Margolin,et al.  β brass bicrystal stress-strain relations , 1973 .

[68]  H. Margolin,et al.  Elastic interaction stresses: parti. the influence of bicrystal size on stresses in [213] Iso-Axial 70-30 alpha-brass bicrystals , 1988 .

[69]  J. Helešic,et al.  Cyclic strain localization in copper single crystals and polycrystals , 1990 .

[70]  C. Laird,et al.  Crack initiation mechanisms in copper polycrystals cycled under constant strain amplitudes and in step tests , 1983 .

[71]  P. Forsyth Slip-band damage and extrusion , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[72]  R. H. Wagoner,et al.  Dislocation pile-up and grain boundary interactions in 304 stainless steel , 1986 .

[73]  A. Saxena,et al.  Low cycle fatigue, fatigue crack propagation and substructures in a series of polycrystalline Cu-Al alloys , 1975 .

[74]  Peter Neumann,et al.  Loop patch behavior as affected by incremental loading and cyclic frequency in fatigue , 1986 .

[75]  Zhongguang Wang,et al.  Cyclic stress-strain response and dislocation structure of a [345]/[117] copper bicrystal , 1997 .

[76]  A. Rollett,et al.  Effect of ramp-treatment on the cyclic stress-strain curve of “small grained” copper , 1993 .

[77]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[78]  Zhongguang Wang,et al.  Cyclic deformation behavior and dislocation structures of [001] copper single crystals-I Cyclic stress-strain response and surface feature , 1997 .

[79]  Z. Zhang,et al.  Effect of grain size on grain boundary strengthening of copper bicrystals under cyclic loading , 2000 .

[80]  J. Hutchinson,et al.  Edge cracks in plastically deforming surface grains , 2001 .

[81]  M. Bassim,et al.  Dislocation structures in fatigued polycrystalline copper , 1994 .

[82]  Z. G. Wang,et al.  Cyclic deformation behaviour of a copper bicrystal with single-slip-oriented component crystals and a perpendicular grain boundary: Cyclic stress—strain response and saturation dislocation observation , 1999 .

[83]  L. Kunz,et al.  Effect of grain size on the high cycle fatigue behaviour of polycrystalline copper , 1987 .

[84]  C. Laird,et al.  The cyclic stress-strain response of copper at low strains—II. Variable amplitude testing , 1981 .

[85]  Z. Zhang,et al.  Effect of component crystal orientations on the cyclic stress-strain behavior of copper bicrystals , 1998 .

[86]  P. Peralta,et al.  Fatigue fracture at bicrystal interfaces : Experiment and theory , 1998 .

[87]  P. Forsyth,et al.  Exudation of Material from Slip Bands at the Surface of Fatigued Crystals of an Aluminium–Copper Alloy , 1953, Nature.

[88]  Z. G. Wang,et al.  Orientation dependence of the cyclic deformation behavior and the role of grain boundaries in fatigue damage in copper crystals , 2001 .

[89]  C. Laird,et al.  Cyclic stress—strain response of polycrystalline copper under fatigue conditions producing enhanced strain localization , 1988 .

[90]  T. Lin,et al.  Micromechanic analysis of fatigue band crossing grain boundary , 1998 .

[91]  C. Laird,et al.  Cyclic stress-strain response of F.C.C. metals and alloys—I Phenomenological experiments , 1967 .

[92]  N. Jin,et al.  Cyclic deformation of copper single crystals oriented for double slip , 1984 .

[93]  L. Lim Slip-twin interactions in nickel at 573K at large strains , 1984 .

[94]  A. Winter Dislocation structure in the interior of a fatigued copper polycrystal , 1980 .

[95]  H. Mughrabi Plateaus in the cyclic stress-strain curves of single- and polycrystalline metals , 1979 .

[96]  J. Polák,et al.  Cyclic stress-strain response and dislocation structures in polycrystalline copper , 1984 .

[97]  Ian M. Robertson,et al.  TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals , 1990 .

[98]  Campbell Laird,et al.  Overview of fatigue behavior in copper single crystals—I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude , 1989 .

[99]  P. Neumann,et al.  Quantitative measurement of persistent slip band profiles and crack initiation , 1986 .

[100]  H. Margolin,et al.  Elastic interaction stresses: Part II. The influence of orientation on stresses generated in iso-axial bicrystals , 1989 .

[101]  A. N. Stroh A theory of the fracture of metals , 1957 .

[102]  E. Nes,et al.  The cyclic stress-strain response of a low alloyed steel. - plateau in the CSS-curve , 1987 .

[103]  B. Chalmers,et al.  The plastic deformation of bicrystals of f.c.c. metals , 1961 .

[104]  M. Bassim,et al.  Dislocation substructure evolution in torsion of pure copper , 1993 .

[105]  T. Mura,et al.  Intergranular Crack Nucleation in Bicrystalline Materials Under Fatigue , 1996 .

[106]  C. Laird,et al.  Substructure evolution of copper polycrystals under different testing conditions: conventional strain control and ramp loading , 1993 .

[107]  A. N. May,et al.  A Model of Metal Fatigue , 1960, Nature.

[108]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[109]  C. Schwink,et al.  Dislocation densities as determined by tem in [100] and [111] CuMn crystals , 1989 .

[110]  H. Burmeister,et al.  Investigations on the origin of grain boundary cracks in fatigued f.c.c. metals , 1997 .

[111]  C. Blochwitz,et al.  Influence of texture on twin boundary cracks in fatigued austenitic stainless steel , 2003 .

[112]  Campbell Laird,et al.  Crack nucleation and stage I propagation in high strain fatigue—II. mechanism , 1978 .

[113]  Z. G. Wang,et al.  Comparison of cyclic deformation behavior between copper bicrystals and their component crystals , 1998 .

[114]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[115]  Z. G. Wang,et al.  Deformation bands in cyclically deformed copper single crystals , 2000 .

[116]  M. Klesnil,et al.  On the cyclic stress-strain response of copper at low stress anplitudes , 1982 .

[117]  M. Fine,et al.  The influence of loading methods on fatigue crack initiation in polycrystalline copper at ambient temperature , 1991 .

[118]  A. Gourgues Electron backscatter diffraction and cracking , 2002 .

[119]  V. Kuokkala,et al.  FATIGUE OF POLYCRYSTALLINE COPPER AT CONSTANT AND VARIABLE PLASTIC STRAIN AMPLITUDES , 1985 .

[120]  Z. G. Wang,et al.  FATIGUE CRACKING POSSIBILITY ALONG GRAIN BOUNDARIES AND PERSISTENT SLIP BANDS IN COPPER BICRYSTALS , 1998 .

[121]  C. Laird,et al.  The cyclic stress-strain curves in monocrystalline and polycrystalline metals , 1978 .

[122]  Z. Zhang,et al.  Effects of grain boundaries on cyclic deformation behavior of copper bicrystals and columnar crystals , 1998 .

[123]  M. Polanyi,et al.  Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte , 1934 .

[124]  V. Paidar,et al.  Plastic deformation of symmetrical bicrystals having σ3 coincidence twin boundary , 1986 .

[125]  N. Mott A theory of the origin of fatigue cracks , 1958 .

[126]  Petr Lukáš,et al.  Effect of mean stress on cyclic stress-strain response and high cycle fatigue life , 1989 .

[127]  Zijian Wang,et al.  Grain boundary effects on the fatigue deformation and cracking behavior of copper bicrystals , 1998 .

[128]  H. Margolin,et al.  Grain boundary contribution to the bauschinger effect in beta-brass bicrystals , 1986 .

[129]  H. Margolin,et al.  Simultaneous hardening and softening in a nonisoaxial β brass bicrystal , 1977 .

[130]  M. S. Paterson,et al.  The influence of strain amplitude on the work hardening of copper crystals in alternating tension and compression , 1960 .

[131]  S. Li,et al.  CYCLIC STRESS-STRAIN RESPONSE AND SURFACE DEFORMATION FEATURES OF (011) MULTIPLE-SLIP- ORIENTED COPPER SINGLE CRYSTALS , 1998 .

[132]  U. Gösele,et al.  A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions , 1981 .

[133]  Z. S. Basinski,et al.  Copper single crystal PSB morphology between 4.2 and 350 K , 1989 .

[134]  L. Kunz,et al.  Is there a plateau in the cyclic stress-strain curves of polycrystalline copper? , 1985 .

[135]  O. B. Pedersen,et al.  Fatigue of copper polycrystals at low plastic strain amplitudes , 1980 .

[136]  A. S. Cheng,et al.  Mechanisms of fatigue hardening in copper single crystals: The effects of strain amplitude and orientation , 1981 .

[137]  J. Baïlon,et al.  An intermediate plateau in the cyclic stress-strain curve of α brass , 1984 .

[138]  E. Teghtsoonian,et al.  Slip band continuity across grain boundaries in aluminum , 1966 .

[139]  M. Klesnil,et al.  High cycle plastic stress-strain response of metals , 1974 .

[140]  S. Tsurekawa,et al.  The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering , 1999 .

[141]  Clyde L. Briant,et al.  Grain boundary structure, chemistry, and failure , 2001 .

[142]  Václav Paidar,et al.  Observation and interpretation of grain boundary compatibility effects in Fe-3.3wt%Si bicrystals , 1989 .

[143]  Tadao Watanabe The impact of grain boundary character distribution on fracture in polycrystals , 1994 .

[144]  P. Mayr,et al.  Persistent slip bands in the interior of a fatigued low carbon steel , 1980 .

[145]  Michael Ortiz,et al.  A micromechanical model of cyclic deformation and fatigue-crack nucleation in f.c.c. single crystals , 1997 .