Convolution quadrature for the wave equation with a nonlinear impedance boundary condition

A rarely exploited advantage of time-domain boundary integral equations compared to their frequency counterparts is that they can be used to treat certain nonlinear problems. In this work we investigate the scattering of acoustic waves by a bounded obstacle with a nonlinear impedance boundary condition. We describe a boundary integral formulation of the problem and prove without any smoothness assumptions on the solution the convergence of a full discretization: Galerkin in space and convolution quadrature in time. If the solution is sufficiently regular, we prove that the discrete method converges at optimal rates. Numerical evidence in 3D supports the theory.

[1]  Jens Markus Melenk,et al.  Runge-Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear Schrödinger equation , 2016, 1605.07340.

[2]  Francisco-Javier Sayas,et al.  Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map , 2016 .

[3]  Michael Karkulik,et al.  Energy norm based error estimators for adaptive BEM for hypersingular integral equations , 2015 .

[4]  Simon R. Arridge,et al.  Solving Boundary Integral Problems with BEM++ , 2015, ACM Trans. Math. Softw..

[5]  Jens Markus Melenk,et al.  Institute for Analysis and Scientific Computing , 2015 .

[6]  J. Melenk,et al.  Local high-order regularization and applications to hp-methods , 2014, Comput. Math. Appl..

[7]  Stefan A. Sauter,et al.  Retarded boundary integral equations on the sphere: exact and numerical solution , 2014 .

[8]  Randolph E. Bank,et al.  On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.

[9]  Stefan A. Sauter,et al.  Generalized convolution quadrature with variable time stepping , 2013 .

[10]  Francisco-Javier Sayas,et al.  Stable numerical coupling of exterior and interior problems for the wave equation , 2013, Numerische Mathematik.

[11]  P. Davies,et al.  Convolution spline approximations for time domain boundary integral equations , 2013, 1305.0646.

[12]  Francisco-Javier Sayas,et al.  Fully discrete Kirchhoff formulas with CQ-BEM , 2013, 1301.0267.

[13]  P. J. Graber,et al.  Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping , 2012 .

[14]  Francisco-Javier Sayas,et al.  Some properties of layer potentials and boundary integral operators for the wave equation , 2011, 1110.4399.

[15]  Jens Markus Melenk,et al.  Runge–Kutta convolution quadrature for operators arising in wave propagation , 2011, Numerische Mathematik.

[16]  Patrick Joly,et al.  Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains , 2011, J. Comput. Phys..

[17]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[18]  Lehel Banjai,et al.  Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..

[19]  Francisco-Javier Sayas,et al.  Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves , 2009, Numerische Mathematik.

[20]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[21]  E. Michielssen,et al.  A fast hybrid field-circuit simulator for transient analysis of microwave circuits , 2004, IEEE Transactions on Microwave Theory and Techniques.

[22]  Houssem Haddar,et al.  Stability of thin layer approximation of electromagnetic waves scattering by linear and non linear coatings , 2002 .

[23]  Houssem Haddar,et al.  Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings , 2002 .

[24]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[25]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[26]  C. Lubich,et al.  On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .

[27]  Irena Lasiecka,et al.  Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping , 1993, Differential and Integral Equations.

[28]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[29]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[30]  Germund Dahlquist,et al.  G-stability is equivalent toA-stability , 1978 .

[31]  Olavi Nevanlinna,et al.  On the convergence of difference approximations to nonlinear contraction semigroups in Hilbert spaces , 1978 .

[32]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[33]  H. T. H. PIAGGIO,et al.  The Operational Calculus , 1943, Nature.

[34]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[35]  G. Burton Sobolev Spaces , 2013 .

[36]  Giovanni Monegato,et al.  A space–time BIE method for nonhomogeneous exterior wave equation problems. The Dirichlet case , 2012 .

[37]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[38]  V. Thomée,et al.  The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .

[39]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[40]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[41]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide , 1986 .

[42]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[43]  M. A. Jaswon Boundary Integral Equations , 1984 .

[44]  J. Mikusiński Hypernumbers. Part I. Algebra , 1983 .

[45]  J. Mikusiński Operational Calculus , 1959 .

[46]  J. Deny,et al.  Les espaces du type de Beppo Levi , 1954 .