Structural, magnetic and theoretical investigations on the magnetocaloric properties of La0.7Sr0.25K0.05MnO3 perovskite

The La0.7Sr0.25K0.05MnO3 (LSKMO0.05) manganite compound was synthesized by the solid state reaction method. X-ray diffraction analysis revealed that this sample crystallizes in the distorted rhombohedral system with the Rc space group. The magnetic study showed a second order paramagnetic (PM)-ferromagnetic (FM) transition at the Curie temperature TC = 332 K. In addition, isothermal measurements of magnetization allowed us, through thermodynamic Maxwell relations, to determine the magnetic entropy change (ΔSM). The maximum magnetic entropy change (ΔSmax) and the relative cooling power (RCP) were found to be, respectively, 2.37 J kg−1 K−1 and 102 J kg−1 for a 2 T magnetic field change along with a negligible hysteresis loss, making this material a promising candidate for magnetic refrigeration. In order to eliminate the drawbacks due to the use of multistep nonlinear fitting in a conventional manner, the field dependence of magnetic entropy change was applied to study the critical behavior. As expected, our results are consistent with the values derived for the 3D-Heisenberg model.

[1]  L. Pi,et al.  Magnetocaloric effect and spontaneous magnetization in perovskite manganite Nd0.55Sr0.45MnO3 , 2016 .

[2]  E. K. Hlil,et al.  The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1−x)TixO3 (0≤x≤0.2) , 2015 .

[3]  D. H. Manh,et al.  B-site aluminum doping effect on magnetic, magnetocaloric and electro-transport properties of La0.7Sr0.3Mn1−xAlxO3 , 2015 .

[4]  K. Bärner,et al.  Critical behavior and long-range ferromagnetic order in perovskite manganite Nd0.55Sr0.45MnO3 , 2015 .

[5]  M. Valente,et al.  Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75 Sr0.1Ca0.15 MnO3 compound , 2015 .

[6]  M. Koubaa,et al.  Structural, magnetic and magnetocaloric properties of La0.8Ca0.2−xNaxMnO3 manganites (0≤x≤0.2) , 2015 .

[7]  E. Hlil,et al.  Effect of Ru substitution on the physical properties of La0.6Pr0.1Sr0.3Mn1−xRuxO3 (x = 0.00, 0.05 and 0.15) perovskites , 2015 .

[8]  W. Boujelben,et al.  Structural, Magnetic, and Electrical Study of Polycrystalline Pr0.55Sr0.45−xNaxMnO3 (x = 0.05 and 0.1) , 2014, Journal of Superconductivity and Novel Magnetism.

[9]  E. Dhahri,et al.  Electrical transport and giant magnetoresistance in La0.8−x□xCa0.2MnO3 (x=0, 0.1 and 0.2) oxides , 2014 .

[10]  E. Dhahri,et al.  Room temperature magnetocaloric effect, critical behavior, and magnetoresistance in Na-deficient manganite La0.8Na0.1MnO3 , 2014 .

[11]  M. Koubaa,et al.  Effect of synthesis method on structural, magnetic and magnetocaloric properties of La0.7Sr0.2Ag0.1MnO3 manganite , 2014 .

[12]  T. Phan,et al.  Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: The case of La1−xCaxMnO3 (0.2≤x≤0.4) , 2013 .

[13]  D. Pociecha,et al.  Room temperature magnetocaloric and magneto-transport properties of monovalent doped Pr0.6Sr0.35Na0.05MnO3 manganite , 2012 .

[14]  M. A. Hamad Calculation of electrocaloric properties of ferroelectric SrBi2Ta2O9 , 2012 .

[15]  J. Coey,et al.  Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature , 2011 .

[16]  V. Franco,et al.  Magnetocaloric effect and critical exponents of Fe77Co5.5Ni5.5Zr7B4Cu1: A detailed study , 2011 .

[17]  L. Pi,et al.  Investigation of critical behavior in Pr0.55Sr0.45MnO3 by using the field dependence of magnetic entropy change , 2011 .

[18]  M. Pękała Magnetic field dependence of magnetic entropy change in nanocrystalline and polycrystalline manganites La1−xMxMnO3 (M=Ca,Sr) , 2010 .

[19]  M. Koubaa,et al.  Magnetocaloric effect above room temperature in the K-doped La0.8Na0.2−xKxMnO3 manganites , 2010 .

[20]  B. Gizhevskii,et al.  An inhomogeneous paramagnetic state of the LaMnO3 + δ nanoceramics prepared by shock-wave loading , 2010 .

[21]  H. Srikanth,et al.  Phase coexistence and magnetocaloric effect in La 5/8-y Pr y Ca 3/8 MnO 3 (y=0.275) , 2010 .

[22]  V. Franco,et al.  A universal curve for the magnetocaloric effect: an analysis based on scaling relations , 2008 .

[23]  T. Samanta,et al.  Magnetocaloric effect in Ho5Pd2: Evidence of large cooling power , 2007 .

[24]  M. Tachibana,et al.  Room-temperature magnetocaloric effect in La0.7Sr0.3Mn1-xM'xO3 (M'=Al, Ti) , 2007, 0708.2168.

[25]  E. Brück,et al.  Magnetocaloric refrigeration near room temperature (invited) , 2007 .

[26]  V. Franco,et al.  Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change , 2006 .

[27]  Á. Rubio,et al.  Anderson localization in carbon nanotubes: defect density and temperature effects. , 2005, Physical review letters.

[28]  B. Dabrowski,et al.  Specific heat anomalies in La 1 − x Sr x Mn O 3 ( 0.12 ⩽ x ⩽ 0.2 ) , 2005 .

[29]  M. Phan,et al.  Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal , 2004 .

[30]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[31]  Youwei Du,et al.  Preparation and magnetocaloric effect of self-doped La0.8?xNa0.2xMnO3+? ( = vacancies) polycrystal , 2002 .

[32]  Zhengge Wang,et al.  Magnetocaloric effect in perovskite manganites La0.7−xNdxCa0.3MnO3 and La0.7Ca0.3MnO3 , 2001 .

[33]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[34]  K. Gschneidner,et al.  Thermodynamics of the magnetocaloric effect , 2001 .

[35]  Vitalij K. Pecharsky,et al.  Gd5(SixGe1–x)4: An Extremum Material , 2001 .

[36]  A. Ulyanov,et al.  Ferromagnetic ordering temperature and internal pressure in manganites La 0.7 Ca 0.3-x Sr x MnO 3 , 2001 .

[37]  T. Tang,et al.  Magnetocaloric properties of Ag-substituted perovskite-type manganites , 2000 .

[38]  Yu-heng Zhang,et al.  Large magnetic entropy change in the colossal magnetoresistance material La2/3Ca1/3MnO3 , 2000 .

[39]  Ning Zhang,et al.  Magnetocaloric properties of Na-substituted perovskite-type manganese oxides , 1998 .

[40]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[41]  Youwei Du,et al.  Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides , 1997 .

[42]  Cox,et al.  Simultaneous structural, magnetic, and electronic transitions in La1-xCaxMnO3 with x=0.25 and 0.50. , 1995, Physical review letters.

[43]  D. Payne,et al.  Interfacial Segregation in Perovskites: III, Microstructure and Electrical Properties , 1990 .

[44]  F. Parker,et al.  Magnetic cooling near Curie temperatures above 300 K , 1984 .

[45]  R. Young,et al.  A new computer program for Rietveld analysis of X-ray powder diffraction patterns , 1981 .

[46]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[47]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[48]  B. Widom,et al.  Equation of State in the Neighborhood of the Critical Point , 1965 .

[49]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .

[50]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .