Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer

NY-ESO-1 is a “cancer-testis” antigen expressed in epithelial ovarian cancer (EOC) and is among the most immunogenic tumor antigens defined to date. The NY-ESO-1 peptide epitope, ESO157–170, is recognized by HLA-DP4-restricted CD4+ T cells and HLA-A2- and A24-restricted CD8+ T cells. To test whether providing cognate helper CD4+ T cells would enhance the antitumor immune response, we conducted a phase I clinical trial of immunization with ESO157–170 mixed with incomplete Freund's adjuvant (Montanide ISA51) in 18 HLA-DP4+ EOC patients with minimal disease burden. NY-ESO-1-specific Ab responses and/or specific HLA-A2-restricted CD8+ and HLA-DP4-restricted CD4+ T cell responses were induced by a course of at least five vaccinations at three weekly intervals in a high proportion of patients. There were no serious vaccine-related adverse events. Vaccine-induced CD8+ and CD4+ T cell clones were shown to recognize NY-ESO-1-expressing tumor targets. T cell receptor analysis indicated that tumor-recognizing CD4+ T cell clones were structurally distinct from non-tumor-recognizing clones. Long-lived and functional vaccine-elicited CD8+ and CD4+ T cells were detectable in some patients up to 12 months after immunization. These results confirm the paradigm that the provision of cognate CD4+ T cell help is important for cancer vaccine design and provides the rationale for a phase II study design using ESO157–170 epitope or the full-length NY-ESO-1 protein for immunotherapy in patients with EOC.

[1]  S. Vogel,et al.  Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming , 2007, Proceedings of the National Academy of Sciences.

[2]  D. Jäger,et al.  Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients , 2006, Proceedings of the National Academy of Sciences.

[3]  K. Odunsi,et al.  Influence of CD4+CD25+ Regulatory T Cells on Low/High-Avidity CD4+ T Cells following Peptide Vaccination1 , 2006, The Journal of Immunology.

[4]  A. Bhan,et al.  A Case for Regulatory B Cells1 , 2006, The Journal of Immunology.

[5]  R. Burger,et al.  Intraperitoneal cisplatin and paclitaxel in ovarian cancer. , 2006, The New England journal of medicine.

[6]  Gerd Ritter,et al.  Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Valmori,et al.  Distinct Structural TCR Repertoires in Naturally Occurring Versus Vaccine-Induced CD8+ T-Cell Responses to the Tumor-Specific Antigen NY-ESO-1 , 2005, Journal of immunotherapy.

[8]  S. Rosenberg,et al.  Immunization of HLA-A*0201 and/or HLA-DPβ1*04 Patients with Metastatic Melanoma Using Epitopes from the NY-ESO-1 Antigen , 2004, Journal of immunotherapy.

[9]  Mark Shackleton,et al.  Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  F. Tanaka,et al.  Identification of HLA-A24-Restricted CTL Epitope from Cancer-Testis Antigen, NY-ESO-1, and Induction of a Specific Antitumor Immune Response , 2004, Clinical Cancer Research.

[11]  Yao-Tseng Chen,et al.  NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. , 2003, Cancer research.

[12]  Yao-Tseng Chen,et al.  Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: Correlation with antibody responses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Yao-Tseng Chen,et al.  Cross-Presentation of HLA Class I Epitopes from Exogenous NY-ESO-1 Polypeptides by Nonprofessional APCs 1 , 2003, The Journal of Immunology.

[14]  George Coukos,et al.  Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. , 2003, The New England journal of medicine.

[15]  Danila Valmori,et al.  Multiepitope CD8(+) T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting. , 2002, The Journal of clinical investigation.

[16]  Yao-Tseng Chen,et al.  CD8+ T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  I. Mellman,et al.  Differential presentation of a soluble exogenous tumor antigen, NY-ESO-1, by distinct human dendritic cell populations , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Sidney,et al.  Generation of NY-ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. , 2002, Cancer research.

[19]  D Guthrie,et al.  Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  D. Jäger,et al.  Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  V. Cerundolo,et al.  Strategy for monitoring T cell responses to NY-ESO-1 in patients with any HLA class I allele. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Robinson,et al.  T-cell receptor transgenic analysis of tumor-specific CD8 and CD4 responses in the eradication of solid tumors. , 1999, Cancer research.

[23]  Richard A. Flavell,et al.  Help for cytotoxic-T-cell responses is mediated by CD40 signalling , 1998, Nature.

[24]  D. Jäger,et al.  Simultaneous Humoral and Cellular Immune Response against Cancer–Testis Antigen NY-ESO-1: Definition of Human Histocompatibility Leukocyte Antigen (HLA)-A2–binding Peptide Epitopes , 1998, The Journal of experimental medicine.

[25]  Yao-Tseng Chen,et al.  A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Bell,et al.  A functionally significant allelic polymorphism in a T cell receptor Vβ gene segment , 1996, European journal of immunology.

[27]  S. L. Silins,et al.  T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen , 1995, The Journal of experimental medicine.

[28]  B. Vogelstein,et al.  Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response , 1990, Cell.