The colored Jones polynomials as vortex partition functions

Abstract We construct 3D $$ \mathcal{N} $$ N = 2 abelian gauge theories on $$ \mathbbm{S} $$ S 2 × $$ \mathbbm{S} $$ S 1 labeled by knot diagrams whose K-theoretic vortex partition functions, each of which is a building block of twisted indices, give the colored Jones polynomials of knots in $$ \mathbbm{S} $$ S 3. The colored Jones polynomials are obtained as the Wilson loop expectation values along knots in SU(2) Chern-Simons gauge theories on $$ \mathbbm{S} $$ S 3, and then our construction provides an explicit correspondence between 3D $$ \mathcal{N} $$ N = 2 abelian gauge theories and 3D SU(2) Chern-Simons gauge theories. We verify, in particular, the applicability of our constructions to a class of tangle diagrams of 2-bridge knots with certain specific twists.

[1]  K. Hori,et al.  Elliptic Genera of 2d $${\mathcal{N}}$$N = 2 Gauge Theories , 2013, 1308.4896.

[2]  Paul Melvin,et al.  The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C) , 1991 .

[3]  Edward Witten Quantum Field Theory and the Jones Polynomial , 1994 .

[4]  A. Kapustin,et al.  Generalized Superconformal Index for Three Dimensional Field Theories , 2011, 1106.2484.

[5]  Sergei Gukov,et al.  3-Manifolds and 3d Indices , 2011, 1112.5179.

[6]  M. Bullimore,et al.  Twisted Hilbert spaces of 3d supersymmetric gauge theories , 2018, Journal of High Energy Physics.

[7]  K. Ueda,et al.  3d N=2 Chern-Simons-matter theory, Bethe ansatz, and quantum K-theory of Grassmannians , 2019, 1912.03792.

[8]  Thang T. Q. Lê Quantum invariants of 3-manifolds: Integrality, splitting, and perturbative expansion , 2000, math/0004099.

[9]  S. Yokoyama,et al.  Index for three dimensional superconformal field theories with general R-charge assignments , 2011, 1101.0557.

[10]  R. Kashaev The Hyperbolic Volume of Knots from the Quantum Dilogarithm , 1996, q-alg/9601025.

[11]  Pietro Longhi,et al.  Physics and Geometry of Knots-Quivers Correspondence , 2018, Communications in Mathematical Physics.

[12]  M. Yamazaki,et al.  Semiclassical analysis of the 3d/3d relation , 2011, 1106.3066.

[13]  Marko Stosic,et al.  BPS states, knots and quivers , 2017, 1707.02991.

[14]  Masazumi Honda,et al.  Higgs branch localization of 3d = 2 theories , 2013, 1312.3627.

[15]  Michele Vergne,et al.  Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue , 1999 .

[16]  Seok Kim The complete superconformal index for N=6 Chern–Simons theory , 2009, 0903.4172.

[17]  S. Gukov,et al.  Vortex Counting and Lagrangian 3-Manifolds , 2010, 1006.0977.

[18]  Pietro Longhi,et al.  Multi-cover skeins, quivers, and 3d , 2020 .

[19]  V. Turaev The Yang-Baxter equation and invariants of links , 1988 .

[20]  Chiung Hwang,et al.  Fundamental vortices, wall-crossing, and particle-vortex duality , 2017, 1703.00213.

[21]  Wolfger Peelaers,et al.  Higgs branch localization in three dimensions , 2013, 1312.6078.

[22]  J. Murakami,et al.  The colored Jones polynomials and the simplicial volume of a knot , 1999, math/9905075.

[23]  C. Vafa,et al.  Braids, Walls, and Mirrors , 2011, 1110.2115.

[24]  A. Zaffaroni,et al.  A topologically twisted index for three-dimensional supersymmetric theories , 2015, 1504.03698.

[25]  H. Murakami An Introduction to the Volume Conjecture , 2010, 1002.0126.

[26]  Jakub Jankowski,et al.  Permutohedra for knots and quivers , 2021, Physical Review D.

[27]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[28]  K. Habiro On the quantum sl_2 invariants of knots and integral homology spheres , 2002, math/0211044.

[29]  Hee-Cheol Kim,et al.  The twisted index and topological saddles , 2020, Journal of High Energy Physics.

[30]  Dan-Wei Zhang,et al.  Boundaries, Vermas and factorisation , 2020, Journal of High Energy Physics.

[31]  S. Gukov,et al.  Chern-Simons theory and S-duality , 2011, 1106.4550.

[32]  C. Closset,et al.  Comments on twisted indices in 3d supersymmetric gauge theories , 2016, 1605.06531.

[33]  J. Murakami,et al.  Optimistic limits of the colored Jones polynomials , 2010, 1009.3137.

[34]  M. Vergne,et al.  Toric reduction and a conjecture of Batyrev and Materov , 2003, math/0306311.

[35]  S. Gukov,et al.  3d-3d correspondence revisited , 2014, 1405.3663.

[36]  D. Gaiotto,et al.  Gauge Theories Labelled by Three-Manifolds , 2011, 1108.4389.

[37]  S. Gukov,et al.  3d analogs of Argyres-Douglas theories and knot homologies , 2012, 1209.1416.

[38]  Kashaev's Invariant and the Volume of a Hyperbolic Knot after Y. Yokota , 2000, math/0008027.

[39]  Holomorphic blocks in three dimensions , 2012, 1211.1986.

[40]  A. Gorsky,et al.  The condensate from torus knots , 2015, 1506.06695.

[41]  L. C. Jeffrey,et al.  Localization for nonabelian group actions , 1993 .

[42]  Y. Yokota ON THE COMPLEX VOLUME OF HYPERBOLIC KNOTS , 2011 .

[43]  Marko Stosic,et al.  Knots-quivers correspondence , 2017, Advances in Theoretical and Mathematical Physics.

[44]  D. Gaiotto Preprint Typeset in Jhep Style -hyper Version N = 2 Dualities , 2022 .

[45]  M. Yamazaki,et al.  SL(2, R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls , 2011 .

[46]  A. Zaffaroni,et al.  Supersymmetric partition functions on Riemann surfaces , 2016, 1605.06120.

[47]  Yutaka Yoshida,et al.  Localization of three-dimensional $\mathcal{N}=2$ supersymmetric theories on $S^1 \times D^2$ , 2020 .

[48]  Shlomo S. Razamat,et al.  Localization techniques in quantum field theories , 2016, 1608.02952.

[49]  Tobias Ekholm,et al.  Knot homologies and generalized quiver partition functions , 2021, Letters in Mathematical Physics.

[50]  C. Vafa,et al.  tt* geometry in 3 and 4 dimensions , 2013, 1312.1008.

[51]  L. Alday,et al.  Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.