Interpolated pressure laws in two-fluid simulations and hyperbolicity

We consider a two-fluid compressible flow. Each fluid obeys a stiffened gas pressure law. The continuous model is well defined without considering mixture regions. However, for numerical applications it is often necessary to consider artificial mixtures, because the two-fluid interface is diffused by the numerical scheme. We show that classic pressure law interpolations lead to a non-convex hyperbolicity domain and failure of well-known numerical schemes. We propose a physically relevant pressure law interpolation construction and show that it leads to a necessary modification of the pure phase pressure laws. We also propose a numerical scheme that permits to approximate the stiffened gas model without artificial mixture.

[1]  Christophe Chalons,et al.  Computing material fronts with a Lagrange-Projection approach , 2010, 1012.4561.

[2]  S. SIAMJ.,et al.  A SIMPLE METHOD FOR COMPRESSIBLE MULTIFLUID FLOWS , 1999 .

[3]  C. Chalons,et al.  Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling , 2007 .

[4]  Jean-Marc Hérard,et al.  A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems , 2002 .

[5]  Philippe Helluy,et al.  Pressure laws and fast Legendre transform , 2011 .

[6]  Philippe Helluy,et al.  Finite volume simulation of cavitating flows , 2005 .

[7]  Jonathan Jung Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides , 2013 .

[8]  Philippe Helluy,et al.  Practical computation of axisymmetrical multifluid flows , 2003 .

[9]  Philippe Helluy,et al.  OpenCL simulations of two-fluid compressible flows with a random choice method , 2013 .

[10]  Frédéric Lagoutière,et al.  An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model , 2010, J. Comput. Phys..

[11]  Bruno Després,et al.  Numerical resolution of a two-component compressible fluid model with interfaces , 2007 .

[12]  P. Helluy,et al.  Numerical schemes for low Mach wave breaking , 2007 .

[13]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[14]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[15]  Siegfried Müller,et al.  Numerical simulation of a single bubble by compressible two‐phase fluids , 2009 .

[16]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[17]  Frédéric Coquel,et al.  Capturing Infinitely Sharp Discrete Shock Profiles with the Godunov Scheme , 2008 .

[18]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[19]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[20]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[21]  Phillip Colella,et al.  Glimm's Method for Gas Dynamics , 1982 .

[22]  Philippe Helluy,et al.  Relaxation models of phase transition flows , 2006 .

[23]  Siegfried Müller,et al.  Random sampling remap for compressible two-phase flows , 2013 .

[24]  M. Mock,et al.  Systems of conservation laws of mixed type , 1980 .

[25]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[26]  Jean-Pierre Croisille,et al.  Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces , 1990 .