Rectilinear geodesics in 3-space (extended abstract)

Rectilinear Geodesics in 3-Space (Extended Abstract) Joonsoo Choi Chee-Keng Courant Institute of Mathematical

[1]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[2]  Emo WELZL,et al.  Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..

[3]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[4]  D. T. Lee,et al.  Rectilinear shortest paths in the presence of rectangular barriers , 1989, Discret. Comput. Geom..

[5]  Mark de Berg,et al.  Shortest path queries in rectilinear worlds , 1992, Int. J. Comput. Geom. Appl..

[6]  David M. Mount,et al.  An output sensitive algorithm for computing visibility graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[7]  Pinaki Mitra,et al.  Orthogonal shortest route queries among axis parallel rectangular obstacles , 1994, Int. J. Comput. Geom. Appl..

[8]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[9]  Subhash Suri,et al.  Efficient computation of Euclidean shortest paths in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[10]  Kenneth L. Clarkson,et al.  Rectilinear shortest paths through polygonal obstacles in O(n(logn)2) time , 1987, SCG '87.

[11]  Michael McKenna Worst-case optimal hidden-surface removal , 1987, TOGS.