From χt to µCRL: Combining Performance and Functional Analysis

In this paper the authors first gave short overviews of the modelling languages timed chi( chit) and muCRL. Then a general translation scheme was presented to translate chit specifications to muCRL specifications. As chit targets performance analysis and muCRL targets functional analysis of systems, this translation scheme provides a way to perform both kinds of analysis on a given chit system model. Finally, an example of a chit system was given and shown how the translation works on a concrete case study

[1]  S. P. Luttik Choice quantification in process algebra , 2002 .

[2]  K. Mani Chandy,et al.  Parallel program design - a foundation , 1988 .

[3]  Jacobus E. Rooda,et al.  Syntax and semantics of timed Chi , 2005 .

[4]  Jan Friso Groote,et al.  Invariants in Process Algebra with Data , 1993, CONCUR.

[5]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[6]  Natalia Sidorova,et al.  Timed Verification with µCRL , 2003, Ershov Memorial Conference.

[7]  Wan Fokkink,et al.  Modelling Distributed Systems , 2010, Texts in Theoretical Computer Science. An EATCS Series.

[8]  Ka Lok Man,et al.  Syntax and consistent equation semantics of hybrid Chi , 2006, J. Log. Algebraic Methods Program..

[9]  Huimin Lin,et al.  Symbolic Transition Graph with Assignment , 1996, CONCUR.

[10]  Jan Friso Groote,et al.  Analysis of a distributed system for lifting trucks , 2003, J. Log. Algebraic Methods Program..

[11]  Marco Pistore,et al.  NuSMV 2: An OpenSource Tool for Symbolic Model Checking , 2002, CAV.

[12]  Jan Friso Groote,et al.  Verifying a Sliding Window Protocol in µCRL , 2004, AMAST.

[13]  Jan Friso Groote,et al.  µCRL: A Toolset for Analysing Algebraic Specifications , 2001, CAV.

[14]  Tommaso Bolognesi,et al.  Tableau methods to describe strong bisimilarity on LOTOS processes involving pure interleaving and enabling , 1994, FORTE.

[15]  Jos C. M. Baeten,et al.  Analyzing a chi model of a turntable system using Spin, CADP and Uppaal , 2005, J. Log. Algebraic Methods Program..

[16]  Itu-T Specification and Description Language (SDL) , 1999 .

[17]  Rance Cleaveland,et al.  TwoTowers: A Tool Integrating Functional and Performance Analysis of Concurrent Systems , 1998, FORTE.

[18]  Joost-Pieter Katoen,et al.  Performance Evaluation : = (Process Algebra + Model Checking) × Markov Chains , 2001, CONCUR.

[19]  Wan Fokkink,et al.  Refinement and Verification Applied to an In-Flight Data Acquisition Unit , 2002, CONCUR.

[20]  Alain Kerbrat,et al.  CADP - A Protocol Validation and Verification Toolbox , 1996, CAV.

[21]  Hans-Dieter Ehrich,et al.  Specification of abstract data types , 1996 .

[22]  Dirk A. van Beek,et al.  Modelling and control of process industry batch production systems , 2002 .

[23]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[24]  J. F. Groote The Syntax and Semantics of timed μ CRL , 1997 .

[25]  Jan Friso Groote,et al.  Checking Verifications of Protocols and Distributed Systems by Computer , 1998, CONCUR.

[26]  Holger Hermanns,et al.  On Combining Functional Verification and Performance Evaluation Using CADP , 2002, FME.

[27]  Anton Wijs,et al.  From Χt to μCRL : Combining performance and functional analysis , 2004 .

[28]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[29]  Roberto Gorrieri,et al.  A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time , 1998, Theor. Comput. Sci..

[30]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[31]  V Victor Bos,et al.  Automatic verification of a manufacturing system , 2001 .