Finite element approximation for the dynamics of asymmetric fluidic biomembranes

We present a parametric finite element approximation of a fluidic membrane, whose evolution is governed by a surface Navier–Stokes equation coupled to bulk Navier–Stokes equations. The elastic properties of the membrane are modelled with the help of curvature energies of Willmore and Helfrich type. Forces stemming from these energies act on the surface fluid, together with a forcing from the bulk fluid. Using ideas from PDE constrained optimization, a weak formulation is derived, which allows for a stable semi-discretization. An important new feature of the present work is that we are able to also deal with spontaneous curvature and an area-difference elasticity contribution in the curvature energy. This allows for the modelling of asymmetric membranes, which compared to the symmetric case lead to quite different shapes. This is demonstrated in the numerical computations presented.

[1]  Thomas Franke,et al.  Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows , 2011, Comput. Vis. Sci..

[2]  Harald Garcke,et al.  A Stable Parametric Finite Element Discretization of Two-Phase Navier–Stokes Flow , 2013, Journal of Scientific Computing.

[3]  Axel Voigt,et al.  Diffuse interface models of locally inextensible vesicles in a viscous fluid , 2013, J. Comput. Phys..

[4]  Harald Garcke,et al.  Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves , 2012, Numerische Mathematik.

[5]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[6]  Peyman Milanfar,et al.  A Stable Numerical Method for Inverting Shape from Moments , 1999, SIAM J. Sci. Comput..

[7]  Pierre Saramito,et al.  Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods , 2014, J. Comput. Phys..

[8]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[9]  Fernando Mut,et al.  A semi-implicit finite element method for viscous lipid membranes , 2014, J. Comput. Phys..

[10]  R. Nürnberg,et al.  Mathematik Eliminating spurious velocities with a stable approximation of incompressible two-phase flow , 2013 .

[11]  Harald Garcke,et al.  On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..

[12]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[13]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[14]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[15]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[16]  Ricardo H. Nochetto,et al.  Parametric FEM for geometric biomembranes , 2010, J. Comput. Phys..

[17]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[18]  J. McWhirter,et al.  Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries , 2009, Proceedings of the National Academy of Sciences.

[19]  Harald Garcke,et al.  Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations , 2008, SIAM J. Sci. Comput..

[20]  Roland Glowinski,et al.  Three‐dimensional numerical simulation of red blood cell motion in Poiseuille flows , 2014 .

[21]  Ricardo H. Nochetto,et al.  Dynamics of Biomembranes: Effect of the Bulk Fluid , 2011 .

[22]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[23]  Harald Garcke,et al.  ON THE STABLE NUMERICAL APPROXIMATION OF TWO-PHASE FLOW WITH INSOLUBLE SURFACTANT , 2013, 1311.4432.

[24]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[25]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[26]  Ming-Chih Lai,et al.  An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows , 2014, J. Comput. Phys..

[27]  H. McMahon,et al.  Mechanisms of membrane fusion: disparate players and common principles , 2008, Nature Reviews Molecular Cell Biology.

[28]  Thomas Richter,et al.  Modeling and Computing of Deformation Dynamics of Inhomogeneous Biological Surfaces , 2013, SIAM J. Appl. Math..

[29]  Marino Arroyo,et al.  Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[31]  Dierk Raabe,et al.  Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. , 2013, Soft matter.

[32]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[33]  Seifert,et al.  Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Victor Steinberg,et al.  Fluid vesicles in flow. , 2013, Advances in colloid and interface science.

[35]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[36]  I. Holopainen Riemannian Geometry , 1927, Nature.

[37]  M. Grzybek,et al.  Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature , 2009, Proceedings of the National Academy of Sciences.

[38]  Eberhard Bänsch,et al.  Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.

[39]  Michael J. Miksis,et al.  Reynolds number effects on lipid vesicles , 2012, Journal of Fluid Mechanics.

[40]  Marino Arroyo,et al.  Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes [corrected]. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  S. Schmidt,et al.  Shape derivatives for general objective functions and the incompressible Navier-Stokes equations , 2010 .

[42]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[43]  Daniel Lengeler,et al.  On a Stokes-type system arising in fluid vesicle dynamics , 2015, 1506.08991.

[44]  A Correspondent,et al.  Dynamics of biomembranes , 1974, Nature.

[45]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[46]  J. Barrett,et al.  Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow , 2013, 1306.2192.