Triple oxygen isotope exchange between chondrule melt and water vapor: An experimental study

[1]  D. Ebel,et al.  Condensation in dust-enriched systems , 2023, 2307.00641.

[2]  I. Franchi,et al.  A water–ice rich minor body from the early Solar System: The CR chondrite parent asteroid , 2014 .

[3]  A. Pack,et al.  Identification of the giant impactor Theia in lunar rocks , 2014, Science.

[4]  R. Ogliore,et al.  Variations in the O-isotope composition of gas during the formation of chondrules from the CR chondrites , 2014 .

[5]  A. Pack,et al.  The triple oxygen isotope composition of the Earth mantle and understanding ΔO17 variations in terrestrial rocks and minerals , 2014 .

[6]  A. Steele,et al.  Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 , 2013, Science.

[7]  A. Pack,et al.  Exploring the usability of isotopically anomalous oxygen in bones and teeth as paleo-CO2-barometer , 2013 .

[8]  T. Tenner,et al.  Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs , 2013 .

[9]  D. Lauretta,et al.  The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine , 2013 .

[10]  Balázs Horváth,et al.  Triple oxygen isotope equilibrium fractionation between carbon dioxide and water , 2012 .

[11]  T. Ushikubo,et al.  Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies , 2011 .

[12]  D. Ebel,et al.  Petrology and oxygen isotope compositions of chondrules in E3 chondrites , 2011 .

[13]  A. Brearley,et al.  Fe‐Mn systematics of type IIA chondrules in unequilibrated CO, CR, and ordinary chondrites , 2011 .

[14]  A. Brearley,et al.  Oxygen Isotopic Composition of Secondary Carbonates in CR1 Chondrite GRO 95577 , 2011 .

[15]  M. Kimura,et al.  Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite , 2011 .

[16]  Edward R. D. Scott,et al.  Chondrules and the Protoplanetary Disk , 2011 .

[17]  G. Libourel,et al.  Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites , 2011 .

[18]  E. Barkan,et al.  Variations of 17O/16O and 18O/16O in meteoric waters , 2010 .

[19]  S. Desch,et al.  THERMAL HISTORIES OF CHONDRULES IN SOLAR NEBULA SHOCKS , 2010, 1008.2741.

[20]  Sara S. Russell,et al.  A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites , 2010 .

[21]  R. Jones Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk , 2010 .

[22]  H. Palme,et al.  The chemical relationship between chondrules and matrix and the chondrule matrix complementarity , 2010 .

[23]  H. C. Connolly,et al.  Compositional evolution of the protoplanetary disk: Oxygen isotopes of type-II chondrules from CR2 chondrites , 2010 .

[24]  I. Hutcheon,et al.  Oxygen- and magnesium-isotope compositions of calcium–aluminum-rich inclusions from CR2 carbonaceous chondrites , 2009 .

[25]  H. Palme,et al.  Partitioning of Na between olivine and melt: An experimental study with application to the formation of meteoritic Na2O-rich chondrule glass and refractory forsterite grains , 2008 .

[26]  F. Ciesla,et al.  COOLING OF DENSE GAS BY H2O LINE EMISSION AND AN ASSESSMENT OF ITS EFFECTS IN CHONDRULE-FORMING SHOCKS , 2008, 0809.5051.

[27]  F. Ciesla,et al.  The Formation Conditions of Chondrules and Chondrites , 2008, Science.

[28]  M. Bizzarro,et al.  Discovery of a New FUN CAI from a CV Carbonaceous Chondrite: Evidence for Multistage Thermal Processing in the Protoplanetary Disk , 2008 .

[29]  K. Tsukamoto,et al.  Critical cooling rates for glass formation in levitated Mg2SiO4-MgSiO3 chondrule melts , 2008 .

[30]  G. Libourel,et al.  Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System , 2008 .

[31]  N. Kita,et al.  Condensation of major elements during chondrule formation and its implication to the origin of chondrules , 2008 .

[32]  G. Wasserburg,et al.  Oxygen Isotopic Compositions of Individual Minerals from FUN CAIs , 2008 .

[33]  Dominik C. Hezel,et al.  Constraints for chondrule formation from Ca–Al distribution in carbonaceous chondrites , 2008 .

[34]  A. Pack,et al.  Determination of oxygen triple isotope ratios of silicates without cryogenic separation of NF3- technique with application to analyses of technical O2 gas and meteorite classification. , 2007, Rapid communications in mass spectrometry : RCM.

[35]  S. Itoh,et al.  Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes , 2007, Science.

[36]  G. Libourel,et al.  Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin , 2007 .

[37]  G. Libourel,et al.  Role of gas-melt interaction during chondrule formation , 2006 .

[38]  L. Leshin,et al.  Oxygen isotopic compositions of chondrules: Implications for evolution of oxygen isotopic reservoirs in the inner solar nebula , 2006 .

[39]  H. Satoh,et al.  Reproduction of chondrules from levitated, hypercooled melts , 2006 .

[40]  G. Libourel,et al.  Oxygen isotope compositions of chondrules in CR chondrites , 2006 .

[41]  E. Barkan,et al.  High precision measurements of 17O/16O and 18O/16O ratios in H2O. , 2005, Rapid communications in mass spectrometry : RCM.

[42]  G. Libourel,et al.  Experimental Constraints on Chondrule Formation , 2005 .

[43]  H. Yurimoto,et al.  Oxygen Isotopic Heterogeneity in the Solar System: The Molecular Cloud Origin Hypothesis and its Implications for Meteorites and the Planets , 2005 .

[44]  K. Ziegler,et al.  Evaporation and the Absence of Oxygen Isotopic Exchange Between Silicate Melt and Carbon Monoxide Gas at Nebular Pressures , 2005 .

[45]  T. Nakamoto,et al.  A shock-wave heating model for chondrule formation II. Minimum size of chondrule precursors , 2005 .

[46]  J. Lyons,et al.  CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula , 2005, Nature.

[47]  R. Durisen,et al.  Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation , 2005, astro-ph/0501592.

[48]  E. Scott,et al.  Evolution of Oxygen Isotopic Composition in the Inner Solar Nebula , 2005, astro-ph/0501078.

[49]  Alan E. Rubin,et al.  Chemical, Mineralogical and Isotopic Properties of Chondrules: Clues to Their Origin , 2004 .

[50]  Hisayoshi Yurimoto,et al.  Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.

[51]  A. Rubin,et al.  Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite 1 1 Associate editor: A. N. Krot , 2004 .

[52]  L. Leshin,et al.  Oxygen isotope heterogeneity in chondrules from the Mokoia CV3 carbonaceous chondrite 1 1 Associate , 2004 .

[53]  S. Desch,et al.  On the origin of the “kleine Kügelchen” called Chondrules , 2004 .

[54]  B. Cohen,et al.  An experimental study of the formation of metallic iron in chondrules , 2004 .

[55]  H. Palme,et al.  Petrographic and oxygen-isotopic study of refractory forsterites from R-chondrite Dar al Gani 013 (R3.5–6), unequilibrated ordinary and carbonaceous chondrites , 2004 .

[56]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[57]  H. Yurimoto,et al.  Relationship among O, Mg isotopes and the petrography of two spinel-bearing compound chondrules , 2003 .

[58]  Lutz Nasdala,et al.  Evidence for fractional condensation and reprocessing at high temperatures in CH chondrites , 2003 .

[59]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[60]  T. Nakamoto,et al.  A Shock-Wave Heating Model for Chondrule Formation: Effects of Evaporation and Gas Flows on Silicate Particles , 2002 .

[61]  K. McKeegan,et al.  Calcium‐aluminum‐rich inclusions and amoeboid olivine aggregates from the CR carbonaceous chondrites , 2002 .

[62]  G. Libourel,et al.  Gas‐melt interactions and their bearing on chondrule formation , 2002 .

[63]  J. B. Paul,et al.  Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy , 2002 .

[64]  F. Ciesla,et al.  The Nebular Shock Wave Model for Chondrule Formation: Shock Processing in a Particle–Gas Suspension , 2002 .

[65]  A. Galy,et al.  Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance , 2002 .

[66]  L. Taylor,et al.  Oxygen Isotopes and the Moon-Forming Giant Impact , 2001, Science.

[67]  T. Nakamoto,et al.  A shock heating model for chondrule formation in a protoplanetary disk , 2001 .

[68]  P. Buseck,et al.  Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: constraints on the chondrule formation environment , 2001 .

[69]  L. Leshin,et al.  16 O enrichments in aluminum-rich chondrules from ordinary chondrites , 2000 .

[70]  K. McKeegan,et al.  Oxygen-Isotopic Compositions of Individual Minerals from the FUN Inclusion Vigarano 1623-5 , 2000 .

[71]  S. Love,et al.  Formation of Chondrules and CAIs: Theory VS. Observation , 2000 .

[72]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[73]  H. Yurimoto,et al.  Oxygen isotope evidence regarding the formation of spinel-bearing chondrules , 1999 .

[74]  Harro A. J. Meijer,et al.  The use of electrolysis for accurate delta O-17 and delta O-18 isotope measurements in water , 1998 .

[75]  Russell,et al.  Oxygen reservoirs in the early solar nebula inferred from an allende CAI , 1998, Science.

[76]  A. Murray,et al.  How to Compact DNA , 1998, Science.

[77]  S. Chakraborty,et al.  The activities of NiO, CoO and FeO in silicate melts , 1997 .

[78]  L. Leshin,et al.  The oxygen isotopic composition of olivine and pyroxene from CI chondrites , 1997 .

[79]  D. Sears,et al.  Chondrules: Their Diversity and the Role of Open-System Processes during Their Formation , 1996 .

[80]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[81]  S. Weinbruch,et al.  Constraints on the cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase , 1995 .

[82]  R. Clayton,et al.  Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .

[83]  R. Clayton,et al.  Experimental study of high temperature oxygen isotope exchange during chondrule formation , 1995 .

[84]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[85]  R. Jones Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona chondrite , 1994 .

[86]  M. Bourot‐Denise,et al.  Origin and Metamorphic Redistribution of Silicon, Chromium, and Phosphorus in the Metal of Chondrites , 1994, Science.

[87]  J. Horita,et al.  Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature , 1994 .

[88]  H. Palme,et al.  Oxygen isotopic composition of individual olivine grains from the Allende meteorite , 1993 .

[89]  Rhian H. Jones,et al.  Petrology and mineralogy of Type II, FeO-rich chondrules in Semarkona (LL3.0) - Origin by closed-system fractional crystallization, with evidence for supercooling , 1990 .

[90]  Z. Sharp A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides , 1990 .

[91]  G. Lofgren Dynamic cyrstallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural , 1989 .

[92]  H. McSween Constraints on Chondrule Origin from Petrology of Isotopically Characterized Chondrules in the Allende Meteorite , 1985 .

[93]  K. Keil,et al.  Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents , 1984 .

[94]  R. Clayton,et al.  Two forsterite-bearing FUN inclusions in the Allende meteorite. [Fractionation and Unknown Nuclear effects , 1984 .

[95]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[96]  R. Clayton,et al.  Oxygen isotopic anomalies in Allende Inclusion Hal , 1980 .

[97]  R. Clayton,et al.  Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar , 1978 .

[98]  G. Wasserburg,et al.  CORRELATED 0 AND Mg ISOTOPIC ANOMAUES IN ALLENDE INCLUSIONS: II. MAGNESIUM , 1977 .

[99]  R. Clayton,et al.  DISTRIBUTION OF THE PRE-SOLAR COMPONENT IN ALLENDE AND OTHER CARBONACEOUS CHONDRITES , 1977 .

[100]  L. Asprey The preparation of very pure fluorine gas , 1976 .

[101]  D. C. Presnall,et al.  A method for studying iron silicate liquids under reducing conditions with negligible iron loss , 1974 .

[102]  H. Urey,et al.  Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. , 1950, The Review of scientific instruments.

[103]  T. Tenner,et al.  Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation , 2015 .

[104]  T. Nakamoto On the formation of chondrules , 2013 .

[105]  Z. Sharp,et al.  The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions , 2012 .

[106]  D. Lauretta,et al.  The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition , 2011 .

[107]  F. Ciesla,et al.  Redox Conditions in the Solar Nebula: Observational, Experimental, and Theoretical Constraints , 2008 .

[108]  R. Ash,et al.  Transient Heating Events in the Protoplanetary Nebula , 2006 .

[109]  D. Lauretta,et al.  Petrology and Origin of Ferromagnesian Silicate Chondrules , 2006 .

[110]  R. Clayton,et al.  Physics: Oxygen drips upwards from superconductors , 2002, Nature.

[111]  D. Cole,et al.  Rates and Mechanisms of Isotopic Exchange , 2001 .

[112]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[113]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[114]  A. Boss A concise guide to chondrule formation models. , 1996 .

[115]  D. Sears,et al.  Open-system behavior during chondrule formation , 1994 .

[116]  E. Scott,et al.  Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite , 1989 .

[117]  G. Morfill,et al.  A review of solar nebula models , 1988 .

[118]  R. Clayton,et al.  Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites , 1983 .

[119]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .