Identification of Temporally Varying Areas of Interest in Long-Duration Eye-Tracking Data Sets

Eye-tracking has become an invaluable tool for the analysis of working practices in many technological fields of activity. Typically studies focus on short tasks and use static expected areas of interest (AoI) in the display to explore subjects' behaviour, making the analyst's task quite straightforward. In long-duration studies, where the observations may last several hours over a complete work session, the AoIs may change over time in response to altering workload, emergencies or other variables making the analysis more difficult. This work puts forward a novel method to automatically identify spatial AoIs changing over time through a combination of clustering and cluster merging in the temporal domain. A visual analysis system based on the proposed methods is also presented. Finally, we illustrate our approach within the domain of air traffic control, a complex task sensitive to prevailing conditions over long durations, though it is applicable to other domains such as monitoring of complex systems.

[1]  Joseph H. Goldberg,et al.  Identifying fixations and saccades in eye-tracking protocols , 2000, ETRA.

[2]  TsangHoi Ying,et al.  eSeeTrack—Visualizing Sequential Fixation Patterns , 2010 .

[3]  V. Lamme,et al.  Bottom-up and top-down attention are independent. , 2013, Journal of vision.

[4]  Thiago Santini,et al.  Bayesian identification of fixations, saccades, and smooth pursuits , 2015, ETRA.

[5]  J. M. Christian Bastien,et al.  Analysing eye-tracking data: From scanpaths and heatmaps to the dynamic visualisation of areas of interest , 2014 .

[6]  Douglas DeCarlo,et al.  Robust clustering of eye movement recordings for quantification of visual interest , 2004, ETRA.

[7]  Andrew T. Duchowski,et al.  iComp: a tool for scanpath visualization and comparison , 2006, APGV.

[8]  Lucas Paletta,et al.  A Computer Vision System for Attention Mapping in SLAM based 3D Models , 2013, ArXiv.

[9]  Michael Burch,et al.  Challenges and Perspectives in Big Eye-Movement Data Visual Analytics , 2015, 2015 Big Data Visual Analytics (BDVA).

[10]  Michael Burch,et al.  State-of-the-Art of Visualization for Eye Tracking Data , 2014, EuroVis.

[11]  Michael Burch,et al.  Gaze Stripes: Image-Based Visualization of Eye Tracking Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[12]  Eli Peli,et al.  Where people look when watching movies: Do all viewers look at the same place? , 2007, Comput. Biol. Medicine.

[13]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Katerina Vrotsou,et al.  Exploratory Visual Sequence Mining Based on Pattern-Growth , 2019, IEEE Transactions on Visualization and Computer Graphics.

[15]  Claudio M. Privitera,et al.  Algorithms for Defining Visual Regions-of-Interest: Comparison with Eye Fixations , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Michael Burch,et al.  Visualization of Eye Tracking Data: A Taxonomy and Survey , 2017, Comput. Graph. Forum.

[17]  Wolfgang Rosenstiel,et al.  Towards automated comparison of eye-tracking recordings in dynamic scenes , 2014, 2014 5th European Workshop on Visual Information Processing (EUVIP).

[18]  Wolfgang Rosenstiel,et al.  Analysis of Eye Movements with Eyetrace , 2015, BIOSTEC.

[19]  Camilla Forsell,et al.  Supporting Exploration of Eye Tracking Data: Identifying Changing Behaviour Over Long Durations , 2016, BELIV '16.

[20]  Gennady L. Andrienko,et al.  Detection, tracking, and visualization of spatial event clusters for real time monitoring , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[21]  Florian Heimerl,et al.  ISeeCube: visual analysis of gaze data for video , 2014 .

[22]  Daniel Weiskopf,et al.  AOI Rivers for Visualizing Dynamic Eye Gaze Frequencies , 2013, Comput. Graph. Forum.

[23]  Michael Burch,et al.  A dynamic graph visualization perspective on eye movement data , 2014, ETRA.

[24]  Melanie Tory,et al.  eSeeTrack—Visualizing Sequential Fixation Patterns , 2010, IEEE Transactions on Visualization and Computer Graphics.

[25]  Sergey Bereg,et al.  Node Overlap Removal by Growing a Tree , 2016, J. Graph Algorithms Appl..

[26]  Alan Kennedy,et al.  Book Review: Eye Tracking: A Comprehensive Guide to Methods and Measures , 2016, Quarterly journal of experimental psychology.

[27]  Joseph H. Goldberg,et al.  Scanpath clustering and aggregation , 2010, ETRA.

[28]  Xia Li,et al.  Visual Exploration of Eye Movement Data Using the Space-Time-Cube , 2010, GIScience.

[29]  Michael Burch,et al.  Visual Analytics Methodology for Eye Movement Studies , 2012, IEEE Transactions on Visualization and Computer Graphics.

[30]  Daniel Weiskopf,et al.  Space-Time Visual Analytics of Eye-Tracking Data for Dynamic Stimuli , 2013, IEEE Transactions on Visualization and Computer Graphics.

[31]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[32]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[33]  Pilar Orero,et al.  Aggregate gaze visualization with real-time heatmaps , 2012, ETRA.

[34]  Daniel Weiskopf,et al.  AOI transition trees , 2015, Graphics Interface.

[35]  Michael J. Haass,et al.  Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations , 2018, IEEE Transactions on Visualization and Computer Graphics.

[36]  S. Yantis,et al.  Visual Attention: Bottom-Up Versus Top-Down , 2004, Current Biology.

[37]  Yi Gu,et al.  ETGraph: A graph-based approach for visual analytics of eye-tracking data , 2017, Comput. Graph..

[38]  John M. Henderson,et al.  Clustering of Gaze During Dynamic Scene Viewing is Predicted by Motion , 2011, Cognitive Computation.

[39]  Thomas Ertl,et al.  AOI hierarchies for visual exploration of fixation sequences , 2016, ETRA.

[40]  Michael Burch,et al.  Visual task solution strategies in tree diagrams , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[41]  Michael Burch,et al.  Eye Tracking and Visualization: Foundations, Techniques, and Applications. ETVIS 2015 , 2017 .

[42]  M. Sheelagh T. Carpendale,et al.  A Review of Temporal Data Visualizations Based on Space-Time Cube Operations , 2014, EuroVis.

[43]  Sheriff Jolaoso,et al.  Scanpath comparison revisited , 2010, ETRA.

[44]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[45]  Matthew D. Cooper,et al.  ActiviTree: Interactive Visual Exploration of Sequences in Event-Based Data Using Graph Similarity , 2009, IEEE Transactions on Visualization and Computer Graphics.

[46]  Daniel Weiskopf,et al.  Visual Analytics for Mobile Eye Tracking , 2017, IEEE Transactions on Visualization and Computer Graphics.

[47]  Nobuyuki Hiruma,et al.  Determining comprehension and quality of TV programs using eye-gaze tracking , 2008, Pattern Recognit..