Forward osmosis organic fouling: Effects of organic loading, calcium and membrane orientation

[1]  I. Christl Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids , 2012 .

[2]  Menachem Elimelech,et al.  Colloidal fouling in forward osmosis: Role of reverse salt diffusion , 2012 .

[3]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[4]  Menachem Elimelech,et al.  Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO) , 2010 .

[5]  Chuyang Y. Tang,et al.  Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration , 2010 .

[6]  M. Elimelech,et al.  Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents , 2010 .

[7]  Amy E. Childress,et al.  The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes , 2009 .

[8]  How Yong Ng,et al.  Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations , 2008 .

[9]  Menachem Elimelech,et al.  Chemical and physical aspects of organic fouling of forward osmosis membranes , 2008 .

[10]  D.J.H. Harmsen,et al.  Membrane fouling and process performance of forward osmosis membranes on activated sludge , 2008 .

[11]  Robert L McGinnis,et al.  A novel ammonia–carbon dioxide osmotic heat engine for power generation , 2007 .

[12]  Menachem Elimelech,et al.  Modeling water flux in forward osmosis: Implications for improved membrane design , 2007 .

[13]  I. Pinnau,et al.  Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux , 2007 .

[14]  J. McCutcheon,et al.  Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis , 2006 .

[15]  J. McCutcheon,et al.  Internal concentration polarization in forward osmosis: role of membrane orientation , 2006 .

[16]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[17]  A. Fane,et al.  Natural organic matter removal by nanofiltration: effects of solution chemistry on retention of low molar mass acids versus bulk organic matter , 2004 .

[18]  Menachem Elimelech,et al.  Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes , 2001 .

[19]  M. Clark,et al.  The effects of pH and calcium on the diffusion coefficient of humic acid , 2001 .

[20]  M. A. Islam,et al.  Contribution of adsorbed layer resistance to the flux-decline in an ultrafiltration process , 1998 .

[21]  Marcel Mulder,et al.  Basic Principles of Membrane Technology , 1991 .

[22]  Vassilis Gekas,et al.  Microfiltration membranes, cross-flow transport mechanisms and fouling studies , 1990 .

[23]  E. Tipping,et al.  The complexation of protons, aluminium and calcium by aquatic humic substances: A model incorporating binding-site heterogeneity and macroionic effects , 1988 .

[24]  C. D. Moody,et al.  Drinking water from sea water by forward osmosis , 1976 .

[25]  Richard E. Kravath,et al.  Desalination of sea water by direct osmosis , 1975 .

[26]  H. Dijk Cation binding of humic acids , 1971 .