Shock ignition of thermonuclear fuel: principles and modelling

Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1?MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined.

[1]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[2]  M. Basko On the scaling of the energy gain of ICF targets , 1995 .

[3]  S. Atzeni,et al.  Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets , 2014 .

[4]  Edward I. Moses,et al.  The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .

[5]  A. Maximov,et al.  Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments , 2009 .

[6]  Guy Schurtz,et al.  Shock ignition: an alternative scheme for HiPER , 2008 .

[7]  M. Richetta,et al.  Preliminary results from recent experiments and future roadmap to Shock Ignition of Fusion Targets , 2012 .

[8]  B. Canaud,et al.  High-gain shock ignition of direct-drive ICF targets for the Laser Mégajoule , 2010 .

[9]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[10]  Andrew J. Schmitt,et al.  Direct Drive Fusion Energy Shock Ignition Designs for Sub-MJ Lasers , 2009 .

[11]  Gordon Andrew Chandler,et al.  Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double-pinch-driven hohlraums , 2005 .

[12]  Vladimir T. Tikhonchuk,et al.  Particle-in-cell simulations of laser–plasma interaction for the shock ignition scenario , 2010 .

[13]  X. Ribeyre,et al.  Optimal conditions for shock ignition of scaled cryogenic deuterium–tritium targets , 2013 .

[14]  X. Ribeyre,et al.  Analytic criteria for shock ignition of fusion reactions in a central hot spot , 2011 .

[15]  F. Tsung,et al.  Growth and saturation of convective modes of the two-plasmon decay instability in inertial confinement fusion. , 2009, Physical review letters.

[16]  R. Betti,et al.  One-dimensional planar hydrodynamic theory of shock ignition , 2011 .

[17]  Jérôme Breil,et al.  Studies on targets for inertial fusion ignition demonstration at the HiPER facility , 2009 .

[18]  J. P. Watteau,et al.  Laser program development at CEL-V: overview of recent experimental results , 1986 .

[19]  D. Hinkel Scientific and technological advancements in inertial fusion energy , 2013 .

[20]  A. Caruso,et al.  Some properties of the plasmas produced by irradiating light solids by laser pulses , 1968 .

[21]  Andrew J. Schmitt,et al.  Simulations of high-gain shock-ignited inertial-confinement-fusion implosions using less than 1 MJ of direct KrF-laser energy , 2010 .

[22]  S. Skupsky,et al.  Shock ignition of thermonuclear fuel with high areal densities , 2008 .

[23]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[24]  C. Capjack,et al.  Interaction of crossed laser beams with plasmas , 1996 .

[25]  S. Laffite,et al.  2D analysis of direct-drive shock-ignited HiPER-like target implosions with the full laser megajoule , 2012 .

[26]  M. Temporal,et al.  Irradiation uniformity and zooming performances for a capsule directly driven by a 32×9 laser beams configuration , 2010 .

[27]  M. Murakami,et al.  Irradiation system based on dodecahedron for inertial confinement fusion , 1995 .

[28]  A. Prokhorov,et al.  REVIEWS OF TOPICAL PROBLEMS: Application of high-power lasers to study matter at ultrahigh pressures , 1984 .

[29]  Stefano Atzeni,et al.  Targets for direct-drive fast ignition at total laser energy of 200-400 kJ , 2007 .

[30]  X. Ribeyre,et al.  Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets , 2010 .

[31]  Scott C. Wilks,et al.  Energy transfer between crossing laser beams , 1996 .

[32]  Stefano Atzeni,et al.  Studies on the robustness of shock-ignited laser fusion targets , 2011 .

[33]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[34]  R. Kidder,et al.  Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .

[35]  A. Schmitt Absolutely Uniform Illumination of Laser Fusion Pellets. , 1984 .

[36]  N. Tahir,et al.  Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition , 2012 .

[37]  V. Rozanov,et al.  Similarity solution of thermonuclear burn wave with electron and α-conductivities , 1976 .

[38]  J Ebrardt,et al.  LMJ on its way to fusion , 2010 .

[39]  Guy Schurtz,et al.  Fast ignitor target studies for the HiPER project , 2008 .

[40]  T. C. Sangster,et al.  Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA , 2012 .

[41]  B. G. Logan,et al.  Direct drive heavy-ion-beam inertial fusion at high coupling efficiency , 2007 .

[42]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[43]  P. B. Radha,et al.  Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators. , 2008, Physical review letters.

[44]  John Giuliani,et al.  Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers , 2009 .

[45]  Max Tabak,et al.  Progress in target physics and design for heavy ion fusion , 1999 .

[46]  John Kelly,et al.  Crossed-beam energy transfer in direct-drive implosions , 2011 .

[47]  Stefano Atzeni,et al.  Driving high-gain shock-ignited inertial confinement fusion targets by green laser light , 2012 .

[48]  A. Maximov,et al.  Multibeam effects on fast-electron generation from two-plasmon-decay instability. , 2003, Physical review letters.

[49]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[50]  J. Dahlburg,et al.  Computational modeling of direct-drive fusion pellets and KrF-driven foil experiments , 1998 .

[51]  M. Murakami,et al.  Optimization of irradiation configuration in laser fusion utilizing self-organizing electrodynamic system , 2010 .

[52]  J. Sajer,et al.  Statistical spatio-temporal properties of the Laser MegaJoule speckle , 2012 .

[53]  W. Mead,et al.  A model for laser driven ablative implosions , 1980 .

[54]  D. Del Sarto,et al.  Fluid and kinetic simulation of inertial confinement fusion plasmas , 2005, Comput. Phys. Commun..

[55]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[56]  J. A. Marozas,et al.  Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA , 2004 .

[57]  Jérôme Breil,et al.  Shock ignition: modelling and target design robustness , 2009 .

[58]  E. Williams,et al.  A variational approach to parametric instabilities in inhomogeneous plasmas III: Two-plasmon decay , 1997 .

[59]  P. Calderoni,et al.  Development Path for Z-Pinch IFE , 2005 .

[60]  G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[61]  S. Atzeni,et al.  An ignition criterion for isobarically compressed, inertially confined D-T plasmas , 1981 .

[62]  P. Chang,et al.  Fast-electron generation in long-scale-length plasmas , 2012 .

[63]  L. Perkins,et al.  Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility. , 2009, Physical review letters.

[64]  Andrew J. Schmitt,et al.  Shock ignition target design for inertial fusion energy , 2010 .

[65]  K. Tanaka,et al.  Fast Ignition Inertial Fusion: An Introduction and Preview , 2006 .

[66]  J. A. Marozas,et al.  A polar-drive shock-ignition design for the National Ignition Facilitya) , 2012 .

[67]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[68]  Stefano Atzeni,et al.  Illumination stability for high-repetition-rate laser facilities in direct-drive inertial confinement fusion , 2011 .

[69]  Michail Tzoufras,et al.  Electron transport and shock ignition , 2011 .

[70]  S. Atzeni Thermonuclear Burn Performance of Volume-Ignited and Centrally Ignited Bare Deuterium-Tritium Microspheres , 1995 .

[71]  G. Dimonte,et al.  Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas. , 2012, Physical review letters.

[72]  Stefano Atzeni,et al.  2-D Lagrangian studies of symmetry and stability of laser fusion targets , 1986 .

[73]  R. Betti,et al.  Laser-Induced Adiabat Shaping by Relaxation in Inertial Fusion Implosions , 2004 .

[74]  J. Meyer-ter-Vehn,et al.  On energy gain of fusion targets: the model of Kidder and Bodner improved , 1982 .

[75]  Andrew J. Schmitt,et al.  Theory of induced spatial incoherence , 1987 .

[76]  Albert Simon,et al.  On the inhomogeneous two‐plasmon instability , 1983 .

[77]  L. Perkins,et al.  Initial experiments on the shock-ignition inertial confinement fusion concept , 2008 .

[78]  A. Liñán,et al.  Quasi‐steady expansion of plasma ablated from laser‐irradiated pellets , 1981 .

[79]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[80]  S. Gus'kov,et al.  Ablation pressure driven by an energetic electron beam in a dense plasma. , 2012, Physical review letters.

[81]  S. Laffite,et al.  Irradiation uniformity of directly driven inertial confinement fusion targets in the context of the shock-ignition scheme , 2011 .

[82]  R. Evans,et al.  Symmetry of spherically converging shock waves through reflection, relating to the shock ignition fusion energy scheme. , 2013, Physical review letters.

[83]  Jun Xiao,et al.  Conditions for perfectly uniform irradiation of spherical laser fusion targets , 1998 .

[84]  S. Atzeni Inertial Confinement Fusion with Advanced Ignition Schemes: Fast Ignition and Shock Ignition , 2013 .

[85]  R. Betti,et al.  High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion , 2005 .

[86]  P. Mora Theoretical model of absorption of laser light by a plasma , 1982 .

[87]  W. Manheimer,et al.  Steady‐state planar ablative flow , 1981 .

[88]  S. Skupsky,et al.  Deceleration phase of inertial confinement fusion implosions , 2002 .

[89]  Gilbert W. Collins,et al.  The direct measurement of ablation pressure driven by 351-nm laser radiation , 2011 .

[90]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[91]  Uniform illumination of spherical laser fusion targets. , 1977, Applied optics.

[92]  Denis G. Colombant,et al.  The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory , 2008 .

[93]  L. J. Atherton,et al.  Implosion dynamics measurements at the National Ignition Facility , 2012 .

[94]  J. D. Kilkenny,et al.  Polar direct drive on the National Ignition Facility , 2004 .

[95]  S. Atzeni REVIEW ARTICLE: The physical basis for numerical fluid simulations in laser fusion , 1987 .

[96]  A. Kemp,et al.  Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets. , 2001, Physical Review Letters.

[97]  W. Manheimer,et al.  Calculations of nonlocal electron energy transport in laser produced plasmas in one and two dimensions using the velocity dependent Krook modela) , 2012 .

[98]  B. Canaud,et al.  Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams , 2011 .

[99]  R. R. Paguio,et al.  Progress in 2 mm Glow Discharge Polymer Mandrel Development for NIF , 2003 .

[100]  Jérôme Breil,et al.  Hydrodynamic and symmetry safety factors of HiPER's targets , 2009 .

[101]  Guy Schurtz,et al.  A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes , 2000 .

[102]  Guy Schurtz,et al.  Gain curves and hydrodynamic modeling for shock ignition , 2010 .

[103]  Vladimir T. Tikhonchuk,et al.  Physics issues for shock ignition , 2014 .

[104]  Guy Schurtz,et al.  Energy and wavelength scaling of shock-ignited inertial fusion targets , 2013 .

[105]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[106]  L. Perkins,et al.  Shock ignition of thermonuclear fuel with high areal density. , 2006, Physical review letters.

[107]  G. McCall Laser-driven implosion experiments , 1983 .

[108]  B. Canaud,et al.  Optimization of laser–target coupling efficiency for direct drive laser fusion , 2005 .

[109]  L. Perkins,et al.  Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility , 2012 .

[110]  S. Skupsky,et al.  Uniformity of energy deposition for laser driven fusion , 1983 .

[111]  Stefano Atzeni,et al.  HiPER target studies: towards the design of high gain, robust, scalable direct-drive targets with advanced ignition schemes , 2011, Optics + Optoelectronics.

[112]  B. Canaud,et al.  Laser Mégajoule irradiation uniformity for direct drive , 2002 .